
1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.5.1

Table	of	Contents
An	Introduction	to	Modern	CMake

Installing	CMake

Running	CMake

Do's	and	Don'ts

What's	new	in	CMake

Introduction	to	the	Basics

Variables	and	the	Cache

Programming	in	CMake

Communicating	with	your	code

How	to	Structure	Your	Project

Running	Other	Programs

A	Simple	Example

Adding	Features

C++11	and	Beyond

Small	but	common	needs

Utilities

Useful	modules

IDEs

Debugging

Including	Projects

Submodule

DownloadProject

Fetch	(CMake	3.11)

Testing

GoogleTest

Catch

Exporting	and	Installing

Installing

Exporting

Packaging

Looking	for	Libraries	(Packages)

CUDA

OpenMP

Boost

MPI

ROOT

UseFile	Example

1

1.7.5.3
1.7.5.2

1.7.6

Simple	Example

Dictionary	Example

Minuit2

2

An	Introduction	to	Modern	CMake
People	love	to	hate	build	systems.	Just	watch	the	talks	from	CppCon17	to	see	examples	of	developers	making	the	state	of	build
systems	the	brunt	of	jokes.	This	raises	the	question:	Why?	Certainly	there	are	no	shortage	of	problems	when	building.	But	I	think
that,	in	2023,	we	have	a	very	good	solution	to	quite	a	few	of	those	problems.	It's	CMake.	Not	CMake	2.8	though;	that	was
released	before	C++11	even	existed!	Nor	the	horrible	examples	out	there	for	CMake	(even	those	posted	on	KitWare's	own
tutorials	list).	I'm	talking	about	Modern	CMake.	CMake	3.5+,	maybe	even	CMake	3.29+!	It's	clean,	powerful,	and	elegant,	so	you
can	spend	most	of	your	time	coding,	not	adding	lines	to	an	unreadable,	unmaintainable	Make	(Or	CMake	2)	file.	And	CMake
3.11+	is	supposed	to	be	significantly	faster,	as	well!

Are	you	interested	in	using	CMake	to	build	Python	packages?	I'm	working	on	scikit-build-core,	proposal	described	here!
Let	me	know	if	you	have	a	use	case!

This	book	is	meant	to	be	a	living	document.	You	can	raise	an	issue	or	put	in	a	merge	request	on	GitLab.	You	can	also
download	a	copy	as	a	PDF.	Be	sure	to	check	the	HSF	CMake	Training,	as	well!

In	short,	here	are	the	most	likely	questions	in	your	mind	if	you	are	considering	Modern	CMake:

Why	do	I	need	a	good	build	system?

Do	any	of	the	following	apply	to	you?

You	want	to	avoid	hard-coding	paths
You	need	to	build	a	package	on	more	than	one	computer
You	want	to	use	CI	(continuous	integration)
You	need	to	support	different	OSs	(maybe	even	just	flavors	of	Unix)
You	want	to	support	multiple	compilers
You	want	to	use	an	IDE,	but	maybe	not	all	of	the	time
You	want	to	describe	how	your	program	is	structured	logically,	not	flags	and	commands
You	want	to	use	a	library
You	want	to	use	tools,	like	Clang-Tidy,	to	help	you	code
You	want	to	use	a	debugger

If	so,	you'll	benefit	from	a	CMake-like	build	system.

Why	must	the	answer	be	CMake?

Build	systems	are	a	hot	topic.	Of	course	there	are	many	options.	But	even	a	really	good	one,	or	one	that	re-uses	a	familiar	syntax,
can't	come	close	to	CMake.	Why?	Support.	Every	IDE	supports	CMake	(or	CMake	supports	that	IDE).	More	packages	use
CMake	than	any	other	system.	So,	if	you	use	a	library	that	is	designed	to	be	included	in	your	code,	you	have	a	choice:	Make	your
own	build	system,	or	use	one	of	the	provided	ones,	and	that	will	almost	always	include	CMake.	And	that	will	quickly	be	the
common	denominator	if	you	include	multiple	projects.	And,	if	you	need	a	library	that's	preinstalled,	the	chances	of	it	having	a	find
CMake	script	or	config	CMake	script	are	excellent.

Why	use	a	Modern	CMake?

An	Introduction	to	Modern	CMake

3

https://iscinumpy.gitlab.io/post/scikit-build-proposal/
https://gitlab.com/CLIUtils/modern-cmake
https://CLIUtils.gitlab.io/modern-cmake/modern-cmake.pdf
https://hsf-training.github.io/hsf-training-cmake-webpage/01-intro/index.html

Why	use	a	Modern	CMake?

Around	CMake	2.6-2.8,	CMake	started	taking	over.	It	was	in	most	of	the	package	managers	for	Linux	OS's,	and	was	being	used	in
lots	of	packages.

Then	Python	3	came	out.

I	know,	this	should	have	nothing	whatsoever	to	do	with	CMake.

But	it	had	a	3.	And	it	followed	2.	And	it	was	a	hard,	ugly,	transition	that	is	still	ongoing	in	some	places,	even	today.

I	believe	that	CMake	3	had	the	bad	luck	to	follow	Python	3. 	Even	though	every	version	of	CMake	is	insanely	backward
compatible,	the	3	series	was	treated	as	if	it	were	something	new.	And	so,	you'll	find	OSs	like	CentOS7	with	GCC	4.8,	with
almost-complete	C++14	support,	and	CMake	2.8,	which	came	out	years	before	C++11.

You	really	should	at	least	use	a	version	of	CMake	that	came	out	after	your	compiler,	since	it	needs	to	know	compiler	flags,	etc,
for	that	version.	And,	since	CMake	will	dumb	itself	down	to	the	minimum	required	version	in	your	CMake	file,	installing	a	new
CMake,	even	system	wide,	is	pretty	safe.	You	should	at	least	install	it	locally.	It's	easy	(1-2	lines	in	many	cases),	and	you'll	find
that	5	minutes	of	work	will	save	you	hundreds	of	lines	and	hours	of	 	CMakeLists.txt		writing,	and	will	be	much	easier	to
maintain	in	the	long	run.

This	book	tries	to	solve	the	problem	of	the	poor	examples	and	best	practices	that	you'll	find	proliferating	the	web.

Other	sources
Other	material	from	the	original	author	of	this	book:

HSF	CMake	Training
Interactive	Modern	CMake	talks

There	are	some	other	places	to	find	good	information	on	the	web.	Here	are	some	of	them:

The	official	help:	Really	amazing	documentation.	Nicely	organized,	great	search,	and	you	can	toggle	versions	at	the	top.	It
just	doesn't	have	a	great	"best	practices	tutorial",	which	is	what	this	book	tries	to	fill	in.
Effective	Modern	CMake:	A	great	list	of	do's	and	don'ts.
Embracing	Modern	CMake:	A	post	with	good	description	of	the	term
It's	time	to	do	CMake	Right:	A	nice	set	of	best	practices	for	Modern	CMake	projects.
The	Ultimate	Guide	to	Modern	CMake:	A	slightly	dated	post	with	similar	intent.
More	Modern	CMake:	A	great	presentation	from	Meeting	C++	2018	that	recommends	CMake	3.12+.	This	talk	makes	calls
CMake	3.0+	"Modern	CMake"	and	CMake	3.12+	"More	Modern	CMake".
Oh	No!	More	Modern	CMake:	The	sequel	to	More	Modern	CMake.
toeb/moderncmake:	A	nice	presentation	and	examples	about	CMake	3.5+,	with	intro	to	syntax	through	project	organization

Credits

Modern	CMake	was	originally	written	by	Henry	Schreiner.	Other	contributors	can	be	found	listed	on	GitLab.

.	CMake	3.0	also	removed	several	long	deprecated	features	from	very	old	versions	of	CMake	and	make	one	very	tiny
backwards	incompatible	change	to	syntax	related	to	square	brackets,	so	this	is	not	entirely	fair;	there	might	be	some	very,
very	old	CMake	files	that	would	stop	working	with	3.	I've	never	seen	one,	though.	↩

1

1

An	Introduction	to	Modern	CMake

4

https://hsf-training.github.io/hsf-training-cmake-webpage/01-intro/index.html
https://gitlab.com/CLIUtils/modern-cmake-interactive-talk
https://cmake.org/cmake/help/latest/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://steveire.wordpress.com/2017/11/05/embracing-modern-cmake/
https://pabloariasal.github.io/2018/02/19/its-time-to-do-cmake-right/
https://rix0r.nl/blog/2015/08/13/cmake-guide/
https://youtu.be/y7ndUhdQuU8
https://www.youtube.com/watch?v=y9kSr5enrSk
https://github.com/toeb/moderncmake
https://iscinumpy.gitlab.io
https://gitlab.com/CLIUtils/modern-cmake/-/network/master

Installing	CMake

Your	CMake	version	should	be	newer	than	your	compiler.	It	should	be	newer	than	the	libraries	you	are	using	(especially
Boost).	New	versions	work	better	for	everyone.

If	you	have	a	built	in	copy	of	CMake,	it	isn't	special	or	customized	for	your	system.	You	can	easily	install	a	new	one	instead,
either	on	the	system	level	or	the	user	level.	Feel	free	to	instruct	your	users	here	if	they	complain	about	a	CMake	requirement	being
set	too	high.	Especially	if	they	want	3.1+	support.	Maybe	even	if	they	want	3.29+	support...

Quick	list	(more	info	on	each	method	below)

Ordered	by	author	preference:

All
Pip(x)	(official,	often	updates	same-day)
Anaconda	/	Conda-Forge

Windows
Winget
Chocolatey
Scoop
MSYS2
Download	binary	(official)

MacOS
Homebrew
MacPorts
Download	binary	(official)

Linux
Snapcraft	(official)
APT	repository	(Ubuntu/Debian	only)	(official)
Download	binary	(official)

Official	package
You	can	download	CMake	from	KitWare.	This	is	how	you	will	probably	get	CMake	if	you	are	on	Windows.	It's	not	a	bad	way	to
get	it	on	macOS	either	(and	a	Universal2	version	is	supplied	supporting	both	Intel	and	Apple	Silicon),	but	using	 	brew	install
cmake		is	much	nicer	if	you	use	Homebrew	(and	you	should;	Apple	even	supports	Homebrew	such	as	during	the	Apple	Silicon
rollout).	You	can	also	get	it	on	most	other	package	managers,	such	as	Chocolatey	for	Windows	or	MacPorts	for	macOS.

On	Linux,	there	are	several	options.	Kitware	provides	a	Debian/Ubuntu	apt	repository,	as	well	as	snap	packages.	There	are
universal	Linux	binaries	provided,	but	you'll	need	to	pick	an	install	location.	If	you	already	use	 	~/.local		for	user-space
packages,	the	following	single	line	command 	will	get	CMake	for	you	 :1 2

~	$	wget	-qO-	"https://cmake.org/files/v3.29/cmake-3.29.0-linux-x86_64.tar.gz"	|	

tar	--strip-components=1	-xz	-C	~/.local

Installing	CMake

5

https://pypi.org/project/cmake/
https://anaconda.org/anaconda/cmake
https://github.com/conda-forge/cmake-feedstock
https://github.com/microsoft/winget-pkgs/tree/master/manifests/k/Kitware/CMake
https://chocolatey.org/packages/cmake
https://github.com/ScoopInstaller/Main/blob/master/bucket/cmake.json
https://packages.msys2.org/base/mingw-w64-cmake
https://cmake.org/download/
https://formulae.brew.sh/formula/cmake
https://ports.macports.org/port/cmake/summary
https://cmake.org/download/
https://snapcraft.io/cmake
https://apt.kitware.com/
https://cmake.org/download/
https://cmake.org/download/
https://brew.sh
https://chocolatey.org
https://www.macports.org
https://apt.kitware.com/
https://snapcraft.io/cmake

The	names	changed	in	3.20;	older	releases	had	names	like	 	cmake-3.19.7-Linux-x86_64.tar.gz	.	If	you	just	want	a	local	folder
with	CMake	only:

You'll	obviously	want	to	append	to	the	PATH	every	time	you	start	a	new	terminal,	or	add	it	to	your	 	.bashrc		or	to	an	LMod
system.

And,	if	you	want	a	system	install,	install	to	 	/usr/local	;	this	is	an	excellent	choice	in	a	Docker	container,	for	example	on	GitLab
CI.	Do	not	try	it	on	a	non-containerized	system.

If	you	are	on	a	system	without	wget,	replace	 	wget	-qO-		with	 	curl	-s	.

You	can	also	build	CMake	on	any	system,	it's	pretty	easy,	but	binaries	are	faster.

CMake	Default	Versions

Here	are	some	common	build	environments	and	the	CMake	version	you'll	find	on	them.	Feel	free	to	install	CMake	yourself,	it's	1-
2	lines	and	there's	nothing	"special"	about	the	built	in	version.	It's	also	very	backward	compatible.

Windows

	 	 	

Also	Scoop	is	generally	up	to	date.	The	normal	installers	from	CMake.org	are	common	on	Windows,	too.

MacOS

	 	

Homebrew	is	quite	a	bit	more	popular	nowadays	on	macOS,	at	least	according	to	Google	Trends.

Linux

RHEL/CentOS

	 	

The	default	on	8	is	not	too	bad,	but	you	should	not	use	the	default	on	7.	Use	the	EPEL	package	instead.

Ubuntu

	 	 	

	

~	$	mkdir	-p	cmake-3.29	&&	wget	-qO-	"https://cmake.org/files/v3.29/cmake-3.29.0-

linux-x86_64.tar.gz"	|	tar	--strip-components=1	-xz	-C	cmake-3.29

~	$	export	PATH=`pwd`/cmake-3.29/bin:$PATH

docker	$	wget	-qO-	"https://cmake.org/files/v3.29/cmake-3.29.0-linux-x86_64.tar.gz"	

|	tar	--strip-components=1	-xz	-C	/usr/local

Installing	CMake

6

http://lmod.readthedocs.io/en/latest/
https://github.com/microsoft/winget-pkgs/tree/master/manifests/k/Kitware/CMake
https://chocolatey.org/packages/cmake
https://packages.msys2.org/base/mingw-w64-cmake
https://packages.msys2.org/base/mingw-w64-cmake
https://github.com/ScoopInstaller/Main/blob/master/bucket/cmake.json
https://formulae.brew.sh/formula/cmake
https://formulae.brew.sh/cask/cmake
https://ports.macports.org/port/cmake/summary
https://rpms.remirepo.net/rpmphp/zoom.php?rpm=cmake
https://rpms.remirepo.net/rpmphp/zoom.php?rpm=cmake
https://rpms.remirepo.net/rpmphp/zoom.php?rpm=cmake
https://launchpad.net/ubuntu/trusty/+source/cmake
https://launchpad.net/ubuntu/xenial/+source/cmake
https://launchpad.net/ubuntu/bionic/+source/cmake
https://launchpad.net/ubuntu/focal/+source/cmake
https://launchpad.net/ubuntu/jammy/+source/cmake
https://repology.org/project/cmake/versions

You	should	only	use	the	default	CMake	on	18.04+;	it's	an	LTS	release	with	a	pretty	decent	minimum	version!

Debian

	 	 	

	

Other

	 	 	

	 	 	

	

General	tools

	 	 	

Just	 	pip	install	cmake		on	many	systems.	Add	 	--user		if	you	have	to	(modern	pip	does	this	for	you	if	needed).	This	does	not
supply	Universal2	wheels	yet.

CI

Distribution CMake	version Notes

TravisCI	Xenial 3.12.4 Mid	November	2018	this	image	became	ready	for	widescale	use.

TravisCI	Bionic 3.12.4 Same	as	Xenial	at	the	moment.

Azure	DevOps 3.29.0 kept	up	to	date

GitHub	Actions	20.04 3.29.0 Same	runners	as	Azure	DevOps

If	you	are	using	GitHub	Actions,	also	see	the	jwlawson/actions-setup-cmake	action,	which	can	install	your	selection	of	CMake,
even	in	a	docker	action	run.

Full	list

Versions	less	than	3.10	are	marked	by	a	deeper	color	of	red.

Installing	CMake

7

https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://pkgs.alpinelinux.org/packages?name=cmake&branch=v3.15
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://repology.org/project/cmake/versions
https://formulae.brew.sh/formula/cmake
https://repology.org/project/cmake/versions
https://pypi.org/project/cmake/
https://github.com/conda-forge/cmake-feedstock
https://anaconda.org/anaconda/cmake
https://docs.travis-ci.com/user/reference/xenial/#compilers-and-build-toolchain
https://docs.travis-ci.com/user/reference/bionic/#compilers-and-build-toolchain
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/hosted?view=azure-devops#use-a-microsoft-hosted-agent
https://github.com/actions/virtual-environments/blob/main/images/linux/Ubuntu2004-Readme.md
https://github.com/marketplace/actions/actions-setup-cmake

Installing	CMake

8

Also	see	pkgs.org/download/cmake.

Pip

This	is	also	provided	as	an	official	package,	maintained	by	the	authors	of	CMake	at	KitWare	and	several	PyPA	members,
including	myself.	It's	now	supported	on	special	architectures,	like	PowerPC	on	Linux	and	Apple	Silicon	on	macOS,	and	on	MUSL
systems	like	Alpine	too.	If	you	have	pip	(Python's	package	installer),	you	can	do:

And	as	long	as	a	binary	exists	for	your	system,	you'll	be	up-and-running	almost	immediately.	If	a	binary	doesn't	exist,	it	will	try	to
use	KitWare's	 	scikit-build		package	to	build,	and	will	require	an	older	copy	of	CMake	to	build.	So	only	use	this	system	if
binaries	exist,	which	is	most	of	the	time.

This	has	the	benefit	of	respecting	your	current	virtual	environment,	as	well.	It	really	shines	when	placed	in	a	 	pyproject.toml	
file,	however	-	it	will	only	be	installed	to	build	your	package,	and	will	not	remain	afterwards!	Fantastic.

This	also,	of	course,	works	with	pipx.	So	you	can	even	use	 	pipx	run	cmake		to	run	CMake	in	a	disposable	virtual	environment,
without	any	setup	-	and	this	works	out-of-the-box	on	GitHub	Actions,	since	 	pipx		is	a	supported	package	manager	there!

Personally,	on	Linux,	I	put	versions	of	CMake	in	folders,	like	 	/opt/cmake312		or	 	~/opt/cmake312	,	and	then	add	them	to
[LMod][].	See	 	envmodule_setup		for	help	setting	up	an	LMod	system	on	macOS	or	Linux.	It	takes	a	bit	to	learn,	but	is	a
great	way	to	manage	package	and	compiler	versions.

.	I	assume	this	is	obvious,	but	you	are	downloading	and	running	code,	which	exposes	you	to	a	man	in	the	middle	attack.	If
you	are	in	a	critical	environment,	you	should	download	the	file	and	check	the	checksum.	(And,	no,	simply	doing	this	in	two
steps	does	not	make	you	any	safer,	only	a	checksum	is	safer).	↩

.	If	you	don't	have	a	 	.local		in	your	home	directory,	it's	easy	to	start.	Just	make	the	folder,	then	add	 	export
PATH="$HOME/.local/bin:$PATH"		to	your	 	.bashrc		or	 	.bash_profile		or	 	.profile		file	in	your	home	directory.	Now
you	can	install	any	packages	you	build	to	 	-DCMAKE_INSTALL_PREFIX=~/.local		instead	of	 	/usr/local	!	↩

gitbook	$	pip	install	cmake

1

2

Installing	CMake

9

https://pkgs.org/download/cmake
https://pypi.org/project/cmake/
https://github.com/CLIUtils/envmodule_setup

Running	CMake
Before	writing	CMake,	let's	make	sure	you	know	how	to	run	it	to	make	things.	This	is	true	for	almost	all	CMake	projects,	which	is
almost	everything.

Building	a	project

Unless	otherwise	noted,	you	should	always	make	a	build	directory	and	build	from	there.	You	can	technically	do	an	in-source
build,	but	you'll	have	to	be	careful	not	to	overwrite	files	or	add	them	to	git,	so	just	don't.

Here's	the	Classic	CMake	Build	Procedure	(TM):

You	can	replace	the	make	line	with	 	cmake	--build	.		if	you'd	like,	and	it	will	call	 	make		or	whatever	build	tool	you	are	using.	If
you	are	using	a	newer	version	of	CMake	(which	you	usually	should	be,	except	for	checking	compatibility	with	older	CMake),	you
can	instead	do	this:

Any	one	of	these	commands	will	install:

So	which	set	of	methods	should	you	use?	As	long	as	you	do	not	forget	to	type	the	build	directory	as	the	argument,	staying	out	of
the	build	directory	is	shorter,	and	making	source	changes	is	easier	from	the	source	directory.	You	should	try	to	get	used	to	using
	--build	,	as	that	will	free	you	from	using	only	 	make		to	build.	Note	that	working	from	the	build	directory	is	historically	much
more	common,	and	some	tools	and	commands	(including	CTest	<3.20)	still	require	running	from	the	build	directory.

Just	to	clarify,	you	can	point	CMake	at	either	the	source	directory	from	the	build	directory,	or	at	an	existing	build	directory	from
anywhere.

~/package	$	mkdir	build

~/package	$	cd	build

~/package/build	$	cmake	..

~/package/build	$	make

~/package	$	cmake	-S	.	-B	build

~/package	$	cmake	--build	build

#	From	the	build	directory	(pick	one)

~/package/build	$	make	install

~/package/build	$	cmake	--build	.	--target	install

~/package/build	$	cmake	--install	.	#	CMake	3.15+	only

#	From	the	source	directory	(pick	one)

~/package	$	make	-C	build	install

~/package	$	cmake	--build	build	--target	install

~/package	$	cmake	--install	build	#	CMake	3.15+	only

Running	CMake

10

If	you	use	 	cmake	--build		instead	of	directly	calling	the	underlying	build	system,	you	can	use	 	-v		for	verbose	builds	(CMake
3.14+),	 	-j	N		for	parallel	builds	on	N	cores	(CMake	3.12+),	and	 	--target		(any	version	of	CMake)	or	 	-t		(CMake	3.15+)	to
pick	a	target.	Otherwise,	these	commands	vary	between	build	systems,	such	as	 	VERBOSE=1	make		and	 	ninja	-v	.	You	can	instead
use	the	environment	variables	for	these,	as	well,	such	as	 	CMAKE_BUILD_PARALLEL_LEVEL		(CMake	3.12+)	and	 	VERBOSE		(CMake
3.14+).

Picking	a	compiler

Selecting	a	compiler	must	be	done	on	the	first	run	in	an	empty	directory.	It's	not	CMake	syntax	per	se,	but	you	might	not	be
familiar	with	it.	To	pick	Clang:

That	sets	the	environment	variables	in	bash	for	CC	and	CXX,	and	CMake	will	respect	those	variables.	This	sets	it	just	for	that	one
line,	but	that's	the	only	time	you'll	need	those;	afterwards	CMake	continues	to	use	the	paths	it	deduces	from	those	values.

Picking	a	generator
You	can	build	with	a	variety	of	tools;	 	make		is	usually	the	default.	To	see	all	the	tools	CMake	knows	about	on	your	system,	run

And	you	can	pick	a	tool	with	 	-G"My	Tool"		(quotes	only	needed	if	spaces	are	in	the	tool	name).	You	should	pick	a	tool	on	your
first	CMake	call	in	a	directory,	just	like	the	compiler.	Feel	free	to	have	several	build	directories,	like	 	build/		and	 	buildXcode	.
You	can	set	the	environment	variable	 	CMAKE_GENERATOR		to	control	the	default	generator	(CMake	3.15+).	Note	that	makefiles	will
only	run	in	parallel	if	you	explicitly	pass	a	number	of	threads,	such	as	 	make	-j2	,	while	Ninja	will	automatically	run	in	parallel.
You	can	directly	pass	a	parallelization	option	such	as	 	-j2		to	the	 	cmake	--build	.		command	in	recent	versions	of	CMake.

Setting	options

You	set	options	in	CMake	with	 	-D	.	You	can	see	a	list	of	options	with	 	-L	,	or	a	list	with	human-readable	help	with	 	-LH	.	If	you
don't	list	the	source/build	directory,	the	listing	will	not	rerun	CMake	(cmake	-L		instead	of	 	cmake	-L	.).

Verbose	and	partial	builds

Although	not	all	build	tools	support	it,	you	can	get	verbose	builds	(pick	one):

You	can	actually	write	 	make	VERBOSE=1	,	and	make	will	also	do	the	right	thing,	though	that's	a	feature	of	 	make		and	not	the
command	line	in	general.

You	can	also	build	just	a	part	of	a	build	by	specifying	a	target,	such	as	the	name	of	a	library	or	executable	you've	defined	in
CMake,	and	make	will	just	build	that	target.

Options

~/package/build	$	CC=clang	CXX=clang++	cmake	..

~/package/build	$	cmake	--help

~/package	$	cmake	--build	build	--verbose	#	CMake	3.14+	only

~/package/build	$	VERBOSE=1	make

Running	CMake

11

CMake	has	support	for	cached	options.	A	Variable	in	CMake	can	be	marked	as	"cached",	which	means	it	will	be	written	to	the
cache	(a	file	called	 	CMakeCache.txt		in	the	build	directory)	when	it	is	encountered.	You	can	preset	(or	change)	the	value	of	a
cached	option	on	the	command	line	with	 	-D	.	When	CMake	looks	for	a	cached	variable,	it	will	use	the	existing	value	and	will	not
overwrite	it.

Standard	options

These	are	common	CMake	options	to	most	packages:

	-DCMAKE_BUILD_TYPE=		Pick	from	Release,	RelWithDebInfo,	Debug,	or	sometimes	more.
	-DCMAKE_INSTALL_PREFIX=		The	location	to	install	to.	System	install	on	UNIX	would	often	be	 	/usr/local		(the	default),
user	directories	are	often	 	~/.local	,	or	you	can	pick	a	folder.
	-DBUILD_SHARED_LIBS=		You	can	set	this	 	ON		or	 	OFF		to	control	the	default	for	shared	libraries	(the	author	can	pick	one	vs.
the	other	explicitly	instead	of	using	the	default,	though)
	-DBUILD_TESTING=		This	is	a	common	name	for	enabling	tests,	not	all	packages	use	it,	though,	sometimes	with	good	reason.

Debugging	your	CMake	files

We've	already	mentioned	verbose	output	for	the	build,	but	you	can	also	see	verbose	CMake	configure	output	too.	The	 	--trace	
option	will	print	every	line	of	CMake	that	is	run.	Since	this	is	very	verbose,	CMake	3.7	added	 	--trace-source="filename"	,
which	will	print	out	every	executed	line	of	just	the	file	you	are	interested	in	when	it	runs.	If	you	select	the	name	of	the	file	you	are
interested	in	debugging	(usually	by	selecting	the	parent	directory	when	debugging	a	CMakeLists.txt,	since	all	of	those	have	the
same	name),	you	can	just	see	the	lines	that	run	in	that	file.	Very	useful!

Running	CMake

12

Do's	and	Don'ts

CMake	Antipatterns

The	next	two	lists	are	heavily	based	on	the	excellent	gist	Effective	Modern	CMake.	That	list	is	much	longer	and	more	detailed,
feel	free	to	read	it	as	well.

Do	not	use	global	functions:	This	includes	 	link_directories	,	 	include_libraries	,	and	similar.
Don't	add	unneeded	PUBLIC	requirements:	You	should	avoid	forcing	something	on	users	that	is	not	required	(-Wall).
Make	these	PRIVATE	instead.
Don't	GLOB	files:	Make	or	another	tool	will	not	know	if	you	add	files	without	rerunning	CMake.	Note	that	CMake	3.12
adds	a	 	CONFIGURE_DEPENDS		flag	that	makes	this	far	better	if	you	need	to	use	it.
Link	to	built	files	directly:	Always	link	to	targets	if	available.
Never	skip	PUBLIC/PRIVATE	when	linking:	This	causes	all	future	linking	to	be	keyword-less.

CMake	Patterns
Treat	CMake	as	code:	It	is	code.	It	should	be	as	clean	and	readable	as	all	other	code.
Think	in	targets:	Your	targets	should	represent	concepts.	Make	an	(IMPORTED)	INTERFACE	target	for	anything	that
should	stay	together	and	link	to	that.
Export	your	interface:	You	should	be	able	to	run	from	build	or	install.
Write	a	Config.cmake	file:	This	is	what	a	library	author	should	do	to	support	clients.
Make	ALIAS	targets	to	keep	usage	consistent:	Using	 	add_subdirectory		and	 	find_package		should	provide	the	same
targets	and	namespaces.
Combine	common	functionality	into	clearly	documented	functions	or	macros:	Functions	are	better	usually.
Use	lowercase	function	names:	CMake	functions	and	macros	can	be	called	lower	or	upper	case.	Always	use	lower	case.
Upper	case	is	for	variables.
Use	 	cmake_policy		and/or	range	of	versions:	Policies	change	for	a	reason.	Only	piecemeal	set	OLD	policies	if	you	have
to.

Selecting	a	minimum	in	2022:
What	minimum	CMake	should	you	run	locally,	and	what	minimum	should	you	support	for	people	using	your	code?	Since	you	are
reading	this,	you	should	be	able	to	get	a	release	in	the	last	few	versions	of	CMake;	do	that,	it	will	make	your	development	easier.
For	support,	there	are	two	ways	to	pick	minimums:	based	on	features	added	(which	is	what	a	developer	cares	about),	or	on
common	pre-installed	CMakes	(which	is	what	a	user	cares	about).

Never	select	a	minimum	version	older	than	the	oldest	compiler	version	you	support.	CMake	should	always	be	at	least	as	new	as
your	compiler.

What	minimum	to	choose	-	OS	support:

3.4:	The	bare	minimum.	Never	set	less.
3.7:	Debian	old-stable.
3.10:	Ubuntu	18.04.
3.11:	CentOS	8	(use	EPEL	or	AppSteams,	though)
3.13:	Debian	stable.
3.16:	Ubuntu	20.04.

Do's	and	Don'ts

13

https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1

3.19:	First	to	support	Apple	Silicon.
latest:	pip/conda-forge/homebew/chocolaty,	etc.

What	minimum	to	choose	-	Features:

3.8:	C++	meta	features,	CUDA,	lots	more
3.11:	 	IMPORTED	INTERFACE		setting,	faster,	FetchContent,	 	COMPILE_LANGUAGE		in	IDEs
3.12:	C++20,	 	cmake	--build	build	-j	N	,	 	SHELL:	,	FindPython
3.14/3.15:	CLI,	FindPython	updates
3.16:	Unity	builds	/	precompiled	headers,	CUDA	meta	features
3.17/3.18:	Lots	more	CUDA,	metaprogramming

Do's	and	Don'ts

14

What's	new	in	CMake
This	is	an	abbreviated	version	of	the	CMake	changelog	with	just	the	highlights	for	authors.	Names	for	each	release	are	arbitrarily
picked	by	the	author.

CMake	in	development:	WIP

A	 	$<QUOTE>		generator	expression	was	added	to	produce	 	"	

[CMake	3.29][]:	Build	before	testing

Finally	you	can	make	the	 	test		target	depend	on	 	ALL	,	meaning	 	cmake	--build	build	-t	test		will	rebuild	as	needed!	You
have	to	opt-into	this,	though,	by	setting	 	CMAKE_SKIP_TEST_ALL_DEPENDENCY		to	false.	Several	improvements	were	made	for
scripting,	linker	selection,	and	support	was	improved	for	various	compiler	combinations	on	Windows.

Initially	released	March	21,	2024
Linker	selection	option	(CMAKE_LINKER_TYPE	/ 	LINKER_TYPE)
	CMAKE_INSTALL_PREFIX		can	now	be	initialized	by	a	matching	environment	variable
If	commands	to	check	file	permissions
Select	launcher	for	tests	(CMAKE_TEST_LAUNCHER	/ 	TEST_LAUNCHER)
You	can	now	make	tests	depend	on	 	all		with	 	CMAKE_SKIP_TEST_ALL_DEPENDENCY		set	to	 	FALSE	!
	cmake_language(EXIT)		for	scripts	with	exit	codes
Select	Intel	OneAPI	Fortran	compiler	with	Visual	Studio
Compile	CUDA	on	Windows	with	Clang

CMake	3.28:	C++20	modules

This	release	adds	C++	module	support.	This	does	not	include	C++23's	 	import	std	,	but	is	exciting	step	forward	for	this
landmark	C++20	feature.	These	will	be	scanned	by	default	if	using	C++20+	and	a	new	enough	compiler	and	valid	generator	and	if
you	have	a	CMake	minimum	or	maximum	that	includes	CMake	3.28.

Initially	released	December	6,	2023
C++20	named	modules	supported	by	Ninja	1.11+	and	MSVC	17.4+.
	HIP		supported	for	NVIDIA.
Apple's	VisionOS	added.
	CMAKE_CROSSCOMPILING_EMULATOR		environment	variable	added.
Get/set	properties	TEST	supports	other	DIRECTORY's
Some	support	for	job	servers	added
Support	for	passing	variables	to	pkg-config
Generator	expressions	now	support	short-circuting

CMake	3.27:	Debugger
This	release	adds	the	new	CMake	debugger!	This	should	improve	support	for	debugging	your	CMake	code	in	something	like
VSCode.	This	release	also	"removes"	FindPythonLibs/FindPythonInterp/FindCUDA;	if	the	min	or	max	version	is	set	to	3.27	or
higher,	the	modules	will	be	missing.

What's	new	in	CMake

15

https://cmake.org/cmake/help/git-master/release/index.html
https://www.kitware.com/cmake-3-29-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.28.html
https://cmake.org/cmake/help/latest/manual/cmake-cxxmodules.7.html
https://www.kitware.com/cmake-3-28-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.27.html

Initially	released	July	19,	2023
C++	Modules	extensions	(.ccm	,	 	.cxxm	,	 	.c++m)	are	treated	as	C++
	COMPILE_ONLY	,	 	LIST	,	and	 	PATH		generator	expressions	added,	along	with	a	few	more	specific	ones.
New	 	SKIP_LINTING	,	as	well	as	more	generator	expression	support	in	things	like	 	<LANG>_CPPCHECK	,	etc.
	find_package		now	searches	for	uppercase	 	<PACKAGENAME>_ROOT		CMake/Environment	variables.
Added	 	add_custom_command(...	DEPENDS_EXPLICIT_ONLY		&	variable	for	Ninja	dependency	control.
CMake	build	verbose	now	prints	the	working	dir	and	command	line	used	to	build.
Better	support	for	versions	of	MSVC.
Several	new	CUDA	properties	related	to	targeting	. 	cubin	/ 	.fatbin	/ 	.optixir	.
Setting	 	cmake_minimum_required		less	than	3.5	is	now	deprecated.
FindCUDA	simi-removed,	use	CUDA	language	and	FindCUDAToolkit.
FindPythonLibs	&	FindPythonInterp	simi-removed,	use	FindPython.

CMake	3.26:	Logging	&	Python

Two	important	additions	for	FindPython,	PyPy	SOABI	support	&	LimitedAPI/StableABI	support,	really	enhance	FindPython's
use.	There	are	quite	a	few	nice	fixes	and	new	warnings,	such	as	if	you	reverse	the	order	of	 	project()		and
	cmake_minimium_required()	.	Logging	has	been	moved	from	 	CMakeOutput.log		and	 	CMakeError.log		to	a	new
	CMakeConfigureLog.yaml		log.

Initially	released	March	14,	2023
FindPython	generates	the	correct	PyPy	SOABI	(finally!)
FindPython	supports	LimitedAPI/StableABI	with	a	new	flag.
CMake	has	a	new	YAML	log	of	configure	time	checks	in	the	output	directory	(also	 	message(CONFIGURE_LOG	...)).
	ASM_MARMASM		language	added	for	Microsoft	ARM	assembler.
	CMAKE_VS_VERSION_BUILD_NUMBER		added	for	the	VS	version	number.
	USE_FOLDERS		is	on	by	default
	"<LANG>_CLANG_TIDY_EXPORT_FIXES_DIR"		for	clang-tidy	suggested	fix	output.
CMake's	copy	CLI	tool	supports	updates	only	if	different
	target_compile_options		now	come	after	 	target_compile_features		/	 	CMAKE_<LANG>_STANDARD	

CMake	3.25:	Blocks	and	SYSTEM

CMake	has	new	block	scoping	commands	selectively	controlling	variables	and	policies.	It	also	has	a	lot	more	control	over
SYSTEM.	The	functional	features	of	CMake	introduced	a	few	releases	ago	are	now	usable	in	 	find_		commands	with
	VALIDATOR	.	Workflows	got	an	upgrade,	too.

Initially	released	November	16,	2022
C++26	support
LTO	for	CUDA	with	nvcc
Workflow	presets	added,	package	presets	too.
	SYSTEM		added	to	 	add_subdirectory	,	 	FetchContent	,	and	as	a	directory	property
	block()	/ 	endblock()		for	policy/variable	scopes,	also	 	PROPOGATE		in	 	return()	
	BSD		&	 	LINUX		variables	added
	VALIDATOR		function	for	 	find_*		commands.
Several	improvements	to	 	try_*		commands.
	SYSTEM		target/directory	property	and	 	EXPORT_NO_SYSTEM		added,	also	for	FetchContent.

CMake	3.24:	Package	Finder

What's	new	in	CMake

16

https://www.kitware.com/cmake-3-27-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.26.html
https://www.kitware.com/cmake-3-26-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.25.html
https://www.kitware.com/cmake-3-25-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.24.html

This	is	a	fantastic	release.	Package	writers	are	getting	integration	between	 	find_package		and	 	FetchContent		that	will	allow
"download	if	missing"	workflows,	and	is	configurable	by	packagers.	Similarly,	warnings	as	errors	can	be	set	by	a	package	and
removed	by	packagers,	as	well	(still	make	sure	not	to	do	this	unless	you	are	being	build	as	the	main	project!).

Initially	released	August	4,	2022
	--fresh		option	removes	the	old	cache	when	running.
	find_package		and	 	FetchContent		now	have	integration	-	you	have	options	to	download	missing	dependencies.
	find_package		has	a	new	 	GLOBAL		option.
	CMAKE_PROJECT_TOP_LEVEL_INCLUDES		allows	a	user	(like	packagers)	to	inject	pre-project	code.
	PATH		management	for	generator	expressions.
	CMAKE_COLOR_DIAGNOSTICS		env	var	&	variable	added,	replacing	 	CMAKE_COLOR_MAKEFILE	.
You	can	disable	 	find_*		searching	the	install	prefix.
	COMPILE_WARNING_AS_ERROR		property	and	 	CMAKE_		variable,	and	 	--compile-no-warning-as-error		to	disable	it.
CUDA	supports	 	native		to	compile	for	the	current	GPUs	detected.
	SYSTEM		includes	now	are	respected	on	MSVC	generators.
Better	support	for	MSVC,	XCode,	and	others.
	LLVMFlang		compiler	support.

CMake	3.23:	Header	only	libraries

A	solid	release	focused	on	header	only	libraries,	more	user	control,	CMake	presets,	and	better	CUDA	support.	There	are	some
powerful	new	features	for	header	only	libraries,	like	the	various	 	*_SETS		target	properties.	There	are	new	controls	like	the	ability
to	restrict	paths	for	 	find_		commands	and	the	ability	to	remove	 	SYSTEM		from	an	existing	target.	You	also	get	expanded
debugging	features,	and	the	ability	to	force	all	links	to	be	to	targets.	Presets	can	include	other	files.	CUDA	and	C#	received	new
updates,	and	a	couple	of	compilers	were	added.

Initially	released	March	29,	2022
CMake	presets	are	a	bit	nicer,	with	the	ability	to	include	other	files.
A	couple	of	new	supported	compilers,	and	better	C#	support.
	FILE_SET		for	 	install		and	 	target_sources		header-only	source	files.
	<INTERFACE_>HEADER_SETS	,	 	<INTERFACE_>HEADER_DIRS		for	target	headers.
	CUDA_ARCHITECTURES		support	for	all	and	all-major.a
DEBUG	messages	from	can	be	enabled	for	 	find_*		or	find	modules.
	define_property()		has	a	handy	 	INITIALIZE_FROM_VARIABLE		option.
	CMAKE_<SYSTEM_>IGNORE_PREFIX_PATH		to	control	 	find_*		commands.
	<CMAKE_>LINK_LIBRARIES_ONLY_TARGETS		added	to	force	only	targets	linked	(nice	for	finding	mistakes!).
	IMPORTED_NO_SYSTEM	,	a	new	property	to	forcibly	remove	SYSTEM	from	a	target.
	FindGTest		now	adds	a	 	GMock		target	if	found.

CMake	3.22:	Handy	env	vars
A	smaller	release	with	some	nice	improvements	all	around	focused	on	supporting	common	build	situations.	You	can	finally	set
	CMAKE_BUILD_TYPE		in	your	environment	to	set	a	default	build	type.	There	are	several	other	new	env	vars	and	variables	too.
Compiler	flags	related	to	standards	have	been	improved.	 	cmake_host_system_information		got	improved	further	(from	3.10)	with
OS	information.

Initially	released	November	18,	2021
New	environment	variables	for	defaults,	 	CMAKE_BUILD_TYPE		and	 	CMAKE_CONFIGURATION_TYPES	
New	environment	variable	 	CMAKE_INSTALL_MODE		for	install	types	(symlinks)
New	 	CMAKE_REQUIRE_FIND_PACKAGE_<PackageName>		variable	to	convert	an	optional	find	to	a	required	one
	CMAKE_<LANG>_EXTENSIONS_DEFAULT		comes	from	the	compiler

What's	new	in	CMake

17

https://blog.kitware.com/cmake-3-24-0-is-available-for-download/
https://cmake.org/cmake/help/latest/release/3.23.html
https://blog.kitware.com/cmake-3-23-0-is-available-for-download/
https://cmake.org/cmake/help/latest/release/3.22.html
https://blog.kitware.com/cmake-3-22-0-available-for-download/

	CMakeDependentOption		uses	normal	conditional	syntax	now
CTest	can	now	modify	environment	variables
Some	generators	now	use	external	(system)	markers	on	includes	for	MSVC

CMake	3.21	:	Colors

Different	message	types	now	have	different	colors!	There's	now	a	nice	variable	to	see	if	you	are	in	the	top	level	project.	Lots	of
continued	cleanup	and	specialized	new	features,	such	as	adding	the	HIP	language	and	C17	and	C23	support.	Presets	continue	to
be	improved.

Initially	released	July	14,	2021
Preliminary	support	for	MSVC	2022
	CMAKE_<LANG>_LINKER_LAUNCHER		added	for	make	and	ninja
HIP	added	as	a	language
C17	and	C23	support	added
	--install-prefix	<dir>		and	 	--toolchain	<file>		added	when	running	CMake
Messages	printed	are	colored	by	message	type!
Support	for	MSYS,	including	 	FindMsys	
The	 	file(command	got	several	updates,	including	 	EXPAND_TILDE	
Support	for	runtime	dependencies	and	artifacts	added	to	 	install	
	PROJECT_IS_TOP_LEVEL		and	 	<PROJECT-NAME>_IS_TOP_LEVEL		finally	added
Caching	improvements	for	the	 	find_		commands

CMake	3.20	:	Docs

The	CMake	docs	received	a	major	boost	in	productivity	by	adding	"new	in"	tags	to	quickly	see	what	was	added	without	having	to
toggle	documentation	versions!	C++	23	support	added.	Source	files	must	have	the	extension	listed	now,	and	LANGUAGE	is
always	respected.	Quite	a	bit	of	cleanup	was	done;	make	sure	your	code	is	tested	with	 	...3.20		before	deploying	that	as	your
maximum.	Presets	continue	to	be	improved.

Initially	released	March	23,	2021
Support	added	for	C++23
CUDAARCHS	environment	variable	for	setting	CUDA	architectures
The	new	 	IntelLLVM		compilers	are	now	supported	(OneAPI	2021.1),	and	 	NVHPC		NVIDIA	HPC	SDK,	as	well
Some	expanded	generator	expression	support	in	custom	commands/targets,	install	renaming
New	 	cmake_path		command	for	working	with	paths
	try_run		now	has	a	 	WORKING_DIRECTORY	
More	features	for	the	 	file(GENERATE		command
Several	removals,	like	 	cmake-server	,	 	WriteCompilerDetectionHeader		(if	policy	set	to	3.20+),	and	a	few	things	that	have
newer	methods	now.
Source	files	must	include	the	extension

CMake	3.19	:	Presets
You	can	now	add	presets	in	JSON	form,	and	users	will	get	the	preset	default.	 	find_package		can	now	take	a	version	range,	and
some	specialty	find	modules,	like	FindPython,	have	custom	support	for	it.	A	lot	of	new	controls	were	added	for	permissions.
Further	support	for	generator	expressions	in	more	places.

Initially	released	November	18,	2020
New	CMake	presets	files	now	supported	-	you	can	set	defaults	for	your	project	per	generator,	or	you	can	make	User	presets.

What's	new	in	CMake

18

https://cmake.org/cmake/help/latest/release/3.21.html
https://blog.kitware.com/cmake-3-21-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.20.html
https://blog.kitware.com/cmake-3-20-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.19.html
https://blog.kitware.com/cmake-3-19-0-available-for-download/
https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

PSA:	Please	add	 	CMakeUserPresets.json		to	your	 	.gitignore	,	even	if	you	do	not	use	 	CMakePresets.json	.
CMake	now	uses	the	new	build	system	introduced	in	XCode	12+
MSVC	for	Android	now	supported
	cmake	-E	create_hardlink		was	added
	add_test		finally	properly	supports	whitespace	in	test	names
You	can	now	 	DEFER		 	cmake_language		to	run	at	the	end	of	the	directory	processing
Lots	of	new	 	file		options,	like	temporary	downloads	and	 	COMPRESSION_LEVEL		for	 	ARCHIVE_CREATE	
	find_package		supports	a	version	range
	DIRECTORY		can	now	include	a	binary	directory	in	property	commands
New	 	JSON		commands	for	 	string	
New	 	OPTIMIZE_DEPENDENCIES		property	and	 	CMAKE_*		variable	for	smartly	dropping	dependencies	of	static	and	object
libraries.
PCH	support	expanded	with	 	PCH_INSTANTIATE_TEMPLATES		property	and	 	CMAKE_*		variable.
Check	modules	have	been	expanded	with	 	CUDA		and	 	ISPC		languages
FindPython:	 	Python*_LINK_OPTIONS		added
	compute-sanitizer		for	ctest	now	supports	CUDA	for	memcheck

CMake	3.18	:	CUDA	with	Clang	&	CMake	macro	language

CUDA	now	supports	Clang	(without	separable	compilation).	A	new	 	CUDA_ARCHITECTURES		property	was	implemented	to	better
support	targeting	CUDA	hardware.	A	new	 	cmake_language		command	supports	calling	cmake	commands	and	expressions	from
strings.	Lots	of	other	meta	changes	that	could	make	new	designs	available;	calling	functions	by	variable,	evaluating	arbitrary
CMake	by	string,	and	configure	files	directly	from	strings.	Many	other	nice	tiny	features	and	papercut	fixes	are	sprinkled
throughout,	a	small	selection	is	below.

Initially	released	July	15,	2020
	cmake		can	 	cat		files	together	now
New	profiling	mode	for	 	cmake	
	cmake_language		with	 	CALL		and	 	EVAL	
	export		requires	 	APPEND		if	used	multiple	times	(in	CMake	language	level	3.18+)
You	can	archive	directly	from	 	file()	
	file(CONFIGURE		is	a	nicer	form	of	 	configure_file		if	you	already	have	a	string	to	produce
Other	 	find_*		commands	gain	 	find_package	's	 	REQUIRED		flag
	NATURAL		sorting	in	 	list(SORT		added
More	options	for	handling	properties	with	DIRECTORY	scope
	CUDA_ARCHITECTURES		was	added
New	 	LINK_LANGUAGE		generator	expressions	(DEVICE	/ 	HOST		versions	too)
Source	can	be	a	subdirectory	for	 	FetchContent	

CMake	3.17	:	More	CUDA

A	FindCUDAToolkit	was	finally	added,	which	allows	finding	and	using	the	CUDA	toolkit	without	enabling	the	CUDA	language!
CUDA	now	is	a	bit	more	configurable,	such	as	linking	to	shared	libraries.	Quite	a	bit	more	polish	in	the	expected	areas,	as	well,
like	FindPython.	Finally,	you	can	now	iterate	over	multiple	lists	at	a	time.

Initially	released	March	20,	2020
	CUDA_RUNTIME_LIBRARY		can	finally	be	set	to	Shared!
FindCUDAToolkit	finally	added
	cmake	-E	rm		replaces	older	remove	commands
CUDA	has	meta	features	like	 	cuda_std_03	,	etc.

What's	new	in	CMake

19

https://cmake.org/cmake/help/latest/release/3.18.html
https://blog.kitware.com/cmake-3-18-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.17.html
https://blog.kitware.com/cmake-3-17-0-available-for-download/

You	can	track	the	searches	for	packages	with	 	--debug-find	
ExternalProject	can	now	disable	recursive	checkouts
FindPython	better	integration	with	Conda
DEPRECATION	can	be	applied	to	targets
CMake	gained	a	rm	command
Several	new	environment	variables
foreach	can	now	do	 	ZIP_LISTS		(multiple	lists	at	a	time)

CMake	3.16	:	Unity	builds

A	new	unity	build	mode	was	added,	allowing	source	files	to	be	merged	into	a	single	build	file.	Support	for	precompiled	headers
(possibly	preparing	for	C++20	modules,	perhaps?)	was	added.	Lots	of	other	smaller	fixes	were	implemented,	especially	to	newer
features,	such	as	to	FindPython,	FindDoxygen,	and	others.

Initially	released	November	26,	2019
Added	support	for	Objective	C	and	Objective	C++	languages
Support	for	precompiling	headers,	with	 	target_precompile_headers	
Support	for	"Unity"	or	"Jumbo"	builds	(merging	source	files)	with	 	CMAKE_UNITY_BUILD	
CTest:	Can	now	skip	based	on	regex,	expand	lists
Several	new	features	to	control	RPath.
Generator	expressions	work	in	more	places,	like	build	and	install	paths
Find	locations	can	now	be	explicitly	controlled	through	new	variables

CMake	3.15	:	CLI	upgrade

This	release	has	many	smaller	polishing	changes,	include	several	of	improvements	to	the	CMake	command	line,	such	as	control
over	the	default	generator	through	environment	variables	(so	now	it's	easy	to	change	the	default	generator	to	Ninja).	Multiple
targets	are	supported	in	 	--build		mode,	and	 	--install		mode	added.	CMake	finally	supports	multiple	levels	of	logging.
Generator	expressions	gained	a	few	handy	tools.	The	still	very	new	FindPython	module	continues	to	improve,	and	FindBoost	is
now	more	inline	with	Boost	1.70's	new	CONFIG	module.	 	export(PACKAGE)		has	drastically	changed;	it	now	no	longer	touches
	$HOME/.cmake		by	default	(if	CMake	Minimum	version	is	3.15	or	higher),	and	requires	an	extra	step	if	a	user	wants	to	use	it.	This
is	generally	less	surprising.

Initially	released	July	17,	2019
	CMAKE_GENERATOR		environment	variable	added	to	control	default	generator
Multiple	target	support	in	build	mode,	 	cmake	.	--build	--target	a	b	
Shortcut	 	-t		for	 	--target	
Install	support,	 	cmake	.	--install	,	does	not	invoke	the	build	system
Support	for	 	--loglevel		and	 	NOTICE	,	 	VERBOSE	,	 	DEBUG	,	and	 	TRACE		for	 	message	
The	 	list		command	gained	 	PREPEND	,	 	POP_FRONT	,	and	 	POP_BACK	
	execute_process		gained	 	COMMAND_ECHO		option	(CMAKE_EXECUTE_PROCESS_COMMAND_ECHO)	allows	you	to	automatically
echo	commands	before	running	them
Several	Ninja	improvements,	include	SWIFT	language	support
Compiler	and	list	improvements	to	generator	expressions

CMake	3.14	:	File	utilities	(AKA	CMake	π)
This	release	has	lots	of	small	cleanups,	including	several	utilities	for	files.	Generator	expressions	work	in	a	few	more	places,	and
list	handling	is	better	with	empty	variables.	Quite	a	few	more	find	packages	produce	targets.	The	new	Visual	Studio	16	2019
generator	is	a	bit	different	than	older	versions.	Windows	XP	and	Vista	support	has	been	dropped.

What's	new	in	CMake

20

https://cmake.org/cmake/help/latest/release/3.16.html
https://blog.kitware.com/cmake-3-16-0-available-for-download/
https://cmake.org/cmake/help/latest//CMAKE_UNITY_BUILD.html
https://cmake.org/cmake/help/latest/release/3.15.html
https://blog.kitware.com/cmake-3-15-0-available-for-download/
https://cmake.org/cmake/help/latest/envvar/CMAKE_GENERATOR.html
https://cmake.org/cmake/help/latest/command/list.html
https://cmake.org/cmake/help/latest/command/execute_process.html
https://cmake.org/cmake/help/latest//CMAKE_EXECUTE_PROCESS_COMMAND_ECHO.html
https://cmake.org/cmake/help/latest/release/3.14.html
https://blog.kitware.com/kitware-gets-mathematical-with-cmake-π-on-pi-day/

Initially	released	March	14,	2019
The	cmake	 	--build		command	gained	 	-v/--verbose	,	to	use	verbose	builds	if	your	build	tool	supports	it
The	FILE	command	gained	 	CREATE_LINK	,	 	READ_SYMLINK	,	and	 	SIZE	
	get*filename_component		gained	 	LAST_EXT		and	 	NAME_WLE		to	access	just	the	_last*	extension	on	a	file,	which	would	get
	.zip		on	a	file	such	as	 	version.1.2.zip		(very	handy!)
You	can	see	if	a	variable	is	defined	in	the	CACHE	with	 	DEFINED	CACHE{VAR}		in	an	 	if		statement.
	BUILD_RPATH_USE_ORIGIN		and	CMake	version	were	added	to	improve	handling	of	RPath	in	the	build	directory.
The	CMake	server	mode	is	now	being	replaced	with	a	file	API,	starting	in	this	release.	Will	affect	IDEs	in	the	long	run.

CMake	3.13	:	Linking	control

You	can	now	make	symbolic	links	on	Windows!	Lots	of	new	functions	that	fill	out	the	popular	requests	for	CMake,	such	as
	add_link_options	,	 	target_link_directories	,	and	 	target_link_options	.	You	can	now	do	quite	a	bit	more	modification	to
targets	outside	of	the	source	directory,	for	better	file	separation.	And,	 	target_sources		finally	handles	relative	paths	properly
(policy	76).

Initially	released	November	20,	2018
New	 	ctest	--progress		option	for	live	output
	target_link_options		and	 	add_link_options		added
	target_link_directories		added
Symbolic	link	creation,	 	-E	create_symlink	,	supported	on	Windows
IPO	supported	on	Windows
You	can	use	 	-S		and	 	-B		for	source	and	build	directories
	target_link_libraries		and	 	install		work	outside	the	current	target	directory
	STATIC_LIBRARY_OPTIONS		property	added
	target_sources		is	now	relative	to	the	current	source	directory	(CMP0076)
If	you	use	Xcode,	you	now	can	experimentally	set	schema	fields

CMake	3.12	:	Version	ranges	and	CONFIGURE_DEPENDS

Very	powerful	release,	containing	lots	of	smaller	long-requested	features.	One	of	the	smaller	but	immediately	noticeable	changes
is	the	addition	of	version	ranges;	you	can	now	set	both	the	minimum	and	maximum	known	CMake	version	easily.	You	can	also
set	 	CONFIGURE_DEPENDS		on	a	 	GLOB	ed	set	of	files,	and	the	build	system	will	check	those	files	and	rerun	if	needed!	You	can	use
the	general	 	PackageName_ROOT		for	all	 	find_package		searches.	Lots	of	additions	to	strings	and	lists,	module	updates,	shiny	new
Python	find	module	(2	and	3	versions	too),	and	many	more.

Initially	released	July	17,	2018
Support	for	 	cmake_minimum_required		ranges	(backward	compatible)
Support	for	 	-j,--parallel		in	 	--build		mode	(passed	on	to	build	tool)
Support	for	 	SHELL:		strings	in	compile	options	(not	deduplicated)
New	FindPython	module
	string(JOIN		and	 	list(JOIN	,	and	 	list(TRANSFORM	
	file(TOUCH		and	 	file(GLOB	CONFIGURE_DEPENDS	
C++20	support
CUDA	as	a	language	improvements:	CUDA	7	and	7.5	now	supported
Support	for	OpenMP	on	macOS	(command	line	only)
Several	new	properties	and	property	initializers
CPack	finally	reads	 	CMAKE_PROJECT_VERSION		variables

What's	new	in	CMake

21

https://blog.kitware.com/cmake-3-14-0-available-for-download/
https://cmake.org/cmake/help/latest/command/get*filename_component.html
https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/release/3.13.html
https://blog.kitware.com/cmake-3-13-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.12.html
https://blog.kitware.com/cmake-3-12-0-available-for-download/

CMake	3.11	:	Faster	&	IMPORTED	INTERFACE

This	release	is	supposed	to	be	much	faster.	You	can	also	finally	directly	add	INTERFACE	targets	to	IMPORTED	libraries	(the
internal	 	Find*.cmake		scripts	should	become	much	cleaner	eventually).

Initially	released	March	28,	2018
Fortran	supports	compiler	launchers
Xcode	and	Visual	Studio	support	 	COMPILE_LANGUAGE		generator	expressions	finally
You	can	now	add	INTERFACE	targets	directly	to	IMPORTED	INTERFACE	libraries	(Wow!)
Source	file	properties	have	been	expanded
	FetchContent		module	now	allows	downloads	to	happen	at	configure	time	(Wow)

CMake	3.10	:	CppCheck
CMake	now	is	built	with	C++11	compilers.	Lots	of	useful	improvements	help	write	cleaner	code.

Initially	released	November	20,	2017
Support	for	flang	Fortran	compiler
Compiler	launcher	added	to	CUDA
Indented	 	#cmakedefines		now	supported	for	 	configure_file	
	include_guard()		added	to	ensure	a	file	gets	included	only	once
	string(PREPEND		added
	*_CPPCHECK		property	added
	LABELS		added	to	directories
FindMPI	vastly	expanded
FindOpenMP	improved
Dynamic	test	discovery	for	 	GoogleTest	
	cmake_host_system_information		can	access	much	more	information.

CMake	3.9	:	IPO

Lots	of	fixes	to	CUDA	support	went	into	this	release,	including	 	PTX		support	and	MSVC	generators.	Interprocedural
Optimizations	are	now	supported	properly.	Even	more	modules	provide	imported	targets,	including	MPI.

Initially	released	July	18,	2017
CUDA	supported	for	Windows
Better	object	library	support	in	several	situations
	DESCRIPTION		added	to	 	project	
	separate_arguments		gets	 	NATIVE_COMMAND	
	INTERPROCEDURAL_OPTIMIZATION		enforced	(and	 	CMAKE_*		initializer	added,	CheckIPOSupported	added,	Clang	and	GCC
support)
New	 	GoogleTest		module
	FindDoxygen		drastically	improved

CMake	3.8	:	C#	&	CUDA
This	adds	CUDA	as	a	language,	as	well	as	 	cxx_std_11		as	a	compiler	meta-feature.	The	new	generator	expression	could	be	really
useful	if	you	can	require	CMake	3.8+!

Initially	released	April	10,	2017

What's	new	in	CMake

22

https://cmake.org/cmake/help/latest/release/3.11.html
https://blog.kitware.com/improving-cmakes-runtime-performance/
https://blog.kitware.com/cmake-3-11-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.10.html
https://blog.kitware.com/cmake-3-10-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.9.html
https://blog.kitware.com/cmake-3-9-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.8.html
https://blog.kitware.com/cmake-3-8-0-available-for-download/

Native	support	for	C#	as	a	language
Native	support	for	CUDA	as	a	language
Meta	features	cxx_std_11	(and	14,	17)	added
	try_compile		has	better	language	support
	BUILD_RPATH		property	added
	COMPILE_FLAGS		now	supports	generator	expression
	*_CPPLINT		added
	$<IF:cond,true-value,false-value>		added	(wow!)
	source_group(TREE		added	(finally	allowing	IDEs	to	reflect	the	project	folder	structure!)

CMake	3.7	:	Android	&	CMake	Server

You	can	now	cross-compile	to	Android.	Useful	new	if	statement	options	really	help	clarify	code.	And	the	new	server	mode	was
supposed	to	improve	integration	with	IDEs	(but	is	being	replaced	by	a	different	system	in	CMake	3.14+).	Support	for	the	VIM
editor	was	also	improved.

Initially	released	November	11,	2016
	PARSE_ARGV		mode	for	 	cmake_parse_arguments	
Better	32-bit	support	on	64-bit	machines
Lots	of	useful	new	if	comparisons,	like	 	VERSION_GREATER_EQUAL		(really,	why	did	it	take	this	long?)
	LINK_WHAT_YOU_USE		added
Lots	of	custom	properties	related	to	files	and	directories
CMake	Server	added
Added	 	--trace-source="filename"		to	monitor	certain	files	only

CMake	3.6	:	Clang-Tidy

This	release	added	Clang-Tidy	support,	along	with	more	utilities	and	improvements.	It	also	removed	the	search	of	 	$PATH		on
Unix	systems	due	to	problems,	instead	users	should	use	 	$CMAKE_PREFIX_PATH	.

Initially	released	July	7,	2016
	EXCLUDE_FROM_ALL		for	install
	list(FILTER		added
	CMAKE_*_STANDARD_INCLUDE_DIRECTORIES		and	 	CMAKE_*_STANDARD_LIBRARIES		added	for	toolchains
Try-compile	improvements
	*_CLANG_TIDY		property	added
External	projects	can	now	be	shallow	clones,	and	other	improvements

CMake	3.5	:	ARM
This	release	expanded	CMake	to	more	platforms,	and	make	warnings	easier	to	control	from	the	command	line.

Initially	released	March	8,	2016
Multiple	input	files	supported	for	several	of	the	 	cmake	-E		commands.
	cmake_parse_arguments		now	builtin
Boost,	GTest,	and	more	now	support	imported	targets
ARMCC	now	supported,	better	support	for	iOS
XCode	backslash	fix

What's	new	in	CMake

23

https://cmake.org/cmake/help/latest/release/3.7.html
https://blog.kitware.com/cmake-3-7-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.6.html
https://blog.kitware.com/cmake-3-6-0-available-for-download/
https://cmake.org/cmake/help/latest/release/3.5.html
https://blog.kitware.com/cmake-3-5-0-available-for-download/

CMake	3.4	:	Swift	&	CCache

This	release	adds	lots	of	useful	tools,	support	for	the	Swift	language,	and	the	usual	improvements.	It	also	started	supporting
compiler	launchers,	like	CCache.

Initially	released	November	12,	2015
Added	 	Swift		language
Added	 	BASE_DIR		to	 	get_filename_component	
	if(TEST	...)		added
	string(APPEND	...)		added
	CMAKE_*_COMPILER_LAUNCHER		added	for	make	and	ninja
	TARGET_MESSAGES		allow	makefiles	to	print	messages	after	target	is	completed
Imported	targets	are	beginning	to	show	up	in	the	official	 	Find*.cmake		files

CMake	3.3	:	if	IN_LIST
This	is	notable	for	the	useful	 	IN_LIST		option	for	if,	but	it	also	added	better	library	search	using	 	$PATH		(See	CMake	3.6),
dependencies	for	INTERFACE	libraries,	and	several	other	useful	improvements.	The	addition	of	a	 	COMPILE_LANGUAGE		generator
expression	would	prove	very	useful	in	the	future	as	more	languages	are	added.	Makefiles	now	produce	better	output	in	parallel.

Initially	released	July	23,	2015
	IN_LIST		added	to	 	if	
	*_INCLUDE_WHAT_YOU_USE		property	added
	COMPILE_LANGUAGE		generator	expression	(limited	support	in	some	generators)

CMake	3.2	:	UTF8

This	is	a	smaller	release,	with	mostly	small	features	and	fixes.	Internal	changes,	like	better	Windows	and	UTF8	support,	were	the
focus.

Initially	released	March	11,	2015
	continue()		inside	loops
File	and	directory	locks	added

CMake	3.1	:	C++11	and	compile	features
This	is	the	first	release	of	CMake	to	support	C++11.	Combined	with	fixes	to	the	new	features	of	CMake	3.0,	this	is	currently	a
common	minimum	version	of	CMake	for	libraries	that	want	to	support	old	CMake	builds.

Initially	released	December	17,	2014
C++11	Support
Compile	features	support
Sources	can	be	added	later	with	 	target_sources	
Better	support	for	generator	expressions	and	INTERFACE	targets

CMake	3.0	:	Interface	libraries

There	were	a	ton	of	additions	to	this	version	of	CMake,	primarily	to	fill	out	the	target	interface.	Some	bits	of	needed	functionality
were	missed	and	implemented	in	CMake	3.1	instead.

What's	new	in	CMake

24

https://cmake.org/cmake/help/latest/release/3.4.html
https://blog.kitware.com/cmake-3-4-0-released/
https://cmake.org/cmake/help/latest/release/3.3.html
https://blog.kitware.com/cmake-3-3-0-released/
https://cmake.org/cmake/help/latest/release/3.2.html
https://blog.kitware.com/cmake-3-2-1-released/
https://cmake.org/cmake/help/latest/release/3.1.html
https://blog.kitware.com/cmake-3-1-0-released/
https://cmake.org/cmake/help/latest/release/3.0.html

Initially	released	June	10,	2014
New	documentation
INTERFACE	libraries
Project	VERSION	support
Exporting	build	trees	easily
Bracket	arguments	and	comments	available	(not	widely	used)
Lots	of	improvements

What's	new	in	CMake

25

https://blog.kitware.com/cmake-3-0-0-available-for-download/

Introduction	to	the	basics

Minimum	Version

Here's	the	first	line	of	every	 	CMakeLists.txt	,	which	is	the	required	name	of	the	file	CMake	looks	for:

cmake_minimum_required(VERSION	3.1)

Let's	mention	a	bit	of	CMake	syntax.	The	command	name	 	cmake_minimum_required		is	case	insensitive,	so	the	common	practice
is	to	use	lower	case.	 	The	 	VERSION		is	a	special	keyword	for	this	function.	And	the	value	of	the	version	follows	the	keyword.
Like	everywhere	in	this	book,	just	click	on	the	command	name	to	see	the	official	documentation,	and	use	the	dropdown	to	switch
documentation	between	CMake	versions.

This	line	is	special!	 	The	version	of	CMake	will	also	dictate	the	policies,	which	define	behavior	changes.	So,	if	you	set
	minimum_required		to	 	VERSION	2.8	,	you'll	get	the	wrong	linking	behavior	on	macOS,	for	example,	even	in	the	newest	CMake
versions.	If	you	set	it	to	3.3	or	less,	you'll	get	the	wrong	hidden	symbols	behaviour,	etc.	A	list	of	policies	and	versions	is	available
at	policies.

Starting	in	CMake	3.12,	this	supports	a	range,	such	as	 	VERSION	3.1...3.15	;	this	means	you	support	as	low	as	3.1	but	have	also
tested	it	with	the	new	policy	settings	up	to	3.15.	This	is	much	nicer	on	users	that	need	the	better	settings,	and	due	to	a	trick	in	the
syntax,	it's	backward	compatible	with	older	versions	of	CMake	(though	actually	running	CMake	3.1-3.11	will	only	set	the	3.1
version	of	the	policies	in	this	example,	since	those	versions	didn't	treat	this	specially).	New	versions	of	policies	tend	to	be	most
important	for	macOS	and	Windows	users,	who	also	usually	have	a	very	recent	version	of	CMake.

This	is	what	new	projects	should	do:

cmake_minimum_required(VERSION	3.7...3.29)

if(${CMAKE_VERSION}	VERSION_LESS	3.12)

				cmake_policy(VERSION	${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION})

endif()

If	CMake	version	is	less	than	3.12,	the	if	block	will	be	true,	and	the	policy	will	be	set	to	the	current	CMake	version.	If	CMake	is
3.12	or	higher,	the	if	block	will	be	false,	but	the	new	syntax	in	 	cmake_minimum_required		will	be	respected	and	this	will	continue
to	work	properly!

WARNING:	MSVC's	CMake	server	mode	originally	had	a	bug	in	reading	this	format,	so	if	you	need	to	support	non-command
line	Windows	builds	for	older	MSVC	versions,	you	will	want	to	do	this	instead:

cmake_minimum_required(VERSION	3.7)

if(${CMAKE_VERSION}	VERSION_LESS	3.29)

				cmake_policy(VERSION	${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION})

else()

				cmake_policy(VERSION	3.29)

endif()

If	you	really	need	to	set	to	a	low	value	here,	you	can	use	 	cmake_policy		to	conditionally	increase	the	policy	level	or	set	a
specific	policy.	Please	at	least	do	this	for	your	macOS	users!

1

2

Introduction	to	the	Basics

26

https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html
https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html
https://github.com/fmtlib/fmt/issues/809
https://cmake.org/cmake/help/latest/command/cmake_policy.html

Setting	a	project

Now,	every	top-level	CMake	file	will	have	the	next	line:

project(MyProject	VERSION	1.0

																		DESCRIPTION	"Very	nice	project"

																		LANGUAGES	CXX)

Now	we	see	even	more	syntax.	Strings	are	quoted,	whitespace	doesn't	matter,	and	the	name	of	the	project	is	the	first	argument
(positional).	All	the	keyword	arguments	here	are	optional.	The	version	sets	a	bunch	of	variables,	like	 	MyProject_VERSION		and
	PROJECT_VERSION	.	The	languages	are	 	C	,	 	CXX	,	 	Fortran	,	 	ASM	,	 	CUDA		(CMake	3.8+),	 	CSharp		(3.8+),	and	 	SWIFT		(CMake
3.15+	experimental).	 	C	CXX		is	the	default.	In	CMake	3.9,	 	DESCRIPTION		was	added	to	set	a	project	description,	as	well.	The
documentation	for	 	project		may	be	helpful.

You	can	add	comments	with	the	 	#		character.	CMake	does	have	an	inline	syntax	for	comments	too,	but	it's	rarely	used.

There's	really	nothing	special	about	the	project	name.	No	targets	are	added	at	this	point.

Making	an	executable
Although	libraries	are	much	more	interesting,	and	we'll	spend	most	of	our	time	with	them,	let's	start	with	a	simple	executable.

add_executable(one	two.cpp	three.h)

There	are	several	things	to	unpack	here.	 	one		is	both	the	name	of	the	executable	file	generated,	and	the	name	of	the	CMake	target
created	(you'll	hear	a	lot	more	about	targets	soon,	I	promise).	The	source	file	list	comes	next,	and	you	can	list	as	many	as	you'd
like.	CMake	is	smart,	and	will	only	compile	source	file	extensions.	The	headers	will	be,	for	most	intents	and	purposes,	ignored;
the	only	reason	to	list	them	is	to	get	them	to	show	up	in	IDEs.	Targets	show	up	as	folders	in	many	IDEs.	More	about	the	general
build	system	and	targets	is	available	at	buildsystem.

Making	a	library
Making	a	library	is	done	with	 	add_library	,	and	is	just	about	as	simple:

add_library(one	STATIC	two.cpp	three.h)

You	get	to	pick	a	type	of	library,	STATIC,	SHARED,	or	MODULE.	If	you	leave	this	choice	off,	the	value	of
	BUILD_SHARED_LIBS		will	be	used	to	pick	between	STATIC	and	SHARED.

As	you'll	see	in	the	following	sections,	often	you'll	need	to	make	a	fictional	target,	that	is,	one	where	nothing	needs	to	be
compiled,	for	example,	for	a	header-only	library.	That	is	called	an	INTERFACE	library,	and	is	another	choice;	the	only	difference
is	it	cannot	be	followed	by	filenames.

You	can	also	make	an	 	ALIAS		library	with	an	existing	library,	which	simply	gives	you	a	new	name	for	a	target.	The	one	benefit	to
this	is	that	you	can	make	libraries	with	 	::		in	the	name	(which	you'll	see	later).	

Targets	are	your	friend

3

Introduction	to	the	Basics

27

https://cmake.org/cmake/help/latest/command/project.html
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#comments
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html
https://cmake.org/cmake/help/latest/command/add_library.html

Now	we've	specified	a	target,	how	do	we	add	information	about	it?	For	example,	maybe	it	needs	an	include	directory:

target_include_directories(one	PUBLIC	include)

	target_include_directories		adds	an	include	directory	to	a	target.	 	PUBLIC	doesn't	mean	much	for	an	executable;	for	a	library	it
lets	CMake	know	that	any	targets	that	link	to	this	target	must	also	need	that	include	directory.	Other	options	are 	PRIVATE	(only
affect	the	current	target,	not	dependencies),	and 	INTERFACE		(only	needed	for	dependencies).

We	can	then	chain	targets:

add_library(another	STATIC	another.cpp	another.h)

target_link_libraries(another	PUBLIC	one)

	target_link_libraries		is	probably	the	most	useful	and	confusing	command	in	CMake.	It	takes	a	target	(another)	and	adds	a
dependency	if	a	target	is	given.	If	no	target	of	that	name	(one)	exists,	then	it	adds	a	link	to	a	library	called	 	one		on	your	path
(hence	the	name	of	the	command).	Or	you	can	give	it	a	full	path	to	a	library.	Or	a	linker	flag.	Just	to	add	a	final	bit	of	confusion,
classic	CMake	allowed	you	to	skip	the	keyword	selection	of	 	PUBLIC	,	etc.	If	this	was	done	on	a	target,	you'll	get	an	error	if	you
try	to	mix	styles	further	down	the	chain.

Focus	on	using	targets	everywhere,	and	keywords	everywhere,	and	you'll	be	fine.

Targets	can	have	include	directories,	linked	libraries	(or	linked	targets),	compile	options,	compile	definitions,	compile	features
(see	the	C++11	chapter),	and	more.	As	you'll	see	in	the	two	including	projects	chapters,	you	can	often	get	targets	(and	always
make	targets)	to	represent	all	the	libraries	you	use.	Even	things	that	are	not	true	libraries,	like	OpenMP,	can	be	represented	with
targets.	This	is	why	Modern	CMake	is	great!

Dive	in
See	if	you	can	follow	the	following	file.	It	makes	a	simple	C++11	library	and	a	program	using	it.	No	dependencies.	I'll	discuss
more	C++	standard	options	later,	using	the	CMake	3.8	system	for	now.

cmake_minimum_required(VERSION	3.8)

project(Calculator	LANGUAGES	CXX)

add_library(calclib	STATIC	src/calclib.cpp	include/calc/lib.hpp)

target_include_directories(calclib	PUBLIC	include)

target_compile_features(calclib	PUBLIC	cxx_std_11)

add_executable(calc	apps/calc.cpp)

target_link_libraries(calc	PUBLIC	calclib)

.	In	this	book,	I'll	mostly	avoid	showing	you	the	wrong	way	to	do	things;	you	can	find	plenty	of	examples	of	that	online.
I'll	mention	alternatives	occasionally,	but	these	are	not	recommended	unless	they	are	absolutely	necessary;	often	they	are
just	there	to	help	you	read	older	CMake	code.	↩

.	You	will	sometimes	see	 	FATAL_ERROR		here,	that	was	needed	to	support	nice	failures	when	running	this	in	CMake	<2.6,
which	should	not	be	a	problem	anymore.	↩

.	The	 	::		syntax	was	originally	intended	for	 	INTERFACE	IMPORTED		libraries,	which	were	explicitly	supposed	to	be
libraries	defined	outside	the	current	project.	But,	because	of	this,	most	of	the	 	target_*		commands	don't	work	on
	IMPORTED		libraries,	making	them	hard	to	set	up	yourself.	So	don't	use	the	 	IMPORTED		keyword	for	now,	and	use	an
	ALIAS		target	instead;	it	will	be	fine	until	you	start	exporting	targets.	This	limitation	was	fixed	in	CMake	3.11.	↩

1

2

3

Introduction	to	the	Basics

28

https://cmake.org/cmake/help/latest/command/target_include_directories.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html

Variables	and	the	Cache

Local	Variables

We	will	cover	variables	first.	A	local	variable	is	set	like	this:

set(MY_VARIABLE	"value")

The	names	of	variables	are	usually	all	caps,	and	the	value	follows.	You	access	a	variable	by	using	 	${}	,	such	as
	${MY_VARIABLE}	. 	CMake	has	the	concept	of	scope;	you	can	access	the	value	of	the	variable	after	you	set	it	as	long	as	you	are	in
the	same	scope.	If	you	leave	a	function	or	a	file	in	a	sub	directory,	the	variable	will	no	longer	be	defined.	You	can	set	a	variable	in
the	scope	immediately	above	your	current	one	with	 	PARENT_SCOPE		at	the	end.

Lists	are	simply	a	series	of	values	when	you	set	them:

set(MY_LIST	"one"	"two")

which	internally	become	 	;		separated	values.	So	this	is	an	identical	statement:

set(MY_LIST	"one;two")

The	 	list(command	has	utilities	for	working	with	lists,	and	 	separate_arguments		will	turn	a	space	separated	string	into	a	list
(inplace).	Note	that	an	unquoted	value	in	CMake	is	the	same	as	a	quoted	one	if	there	are	no	spaces	in	it;	this	allows	you	to	skip	the
quotes	most	of	the	time	when	working	with	value	that	you	know	could	not	contain	spaces.

When	a	variable	is	expanded	using	 	${}		syntax,	all	the	same	rules	about	spaces	apply.	Be	especially	careful	with	paths;	paths
may	contain	a	space	at	any	time	and	should	always	be	quoted	when	they	are	a	variable	(never	write	 	${MY_PATH}	,	always	should
be	 	"${MY_PATH}").

Cache	Variables

If	you	want	to	set	a	variable	from	the	command	line,	CMake	offers	a	variable	cache.	Some	variables	are	already	here,	like
	CMAKE_BUILD_TYPE	.	The	syntax	for	declaring	a	variable	and	setting	it	if	it	is	not	already	set	is:

set(MY_CACHE_VARIABLE	"VALUE"	CACHE	STRING	"Description")

This	will	not	replace	an	existing	value.	This	is	so	that	you	can	set	these	on	the	command	line	and	not	have	them	overridden	when
the	CMake	file	executes.	If	you	want	to	use	these	variables	as	a	make-shift	global	variable,	then	you	can	do:

set(MY_CACHE_VARIABLE	"VALUE"	CACHE	STRING	""	FORCE)

mark_as_advanced(MY_CACHE_VARIABLE)

The	first	line	will	cause	the	value	to	be	set	no	matter	what,	and	the	second	line	will	keep	the	variable	from	showing	up	in	the	list
of	variables	if	you	run	 	cmake	-L	..		or	use	a	GUI.	This	is	so	common,	you	can	also	use	the	 	INTERNAL		type	to	do	the	same	thing
(though	technically	it	forces	the	STRING	type,	this	won't	affect	any	CMake	code	that	depends	on	the	variable):

set(MY_CACHE_VARIABLE	"VALUE"	CACHE	INTERNAL	"")

1

Variables	and	the	Cache

29

Since	 	BOOL		is	such	a	common	variable	type,	you	can	set	it	more	succinctly	with	the	shortcut:

option(MY_OPTION	"This	is	settable	from	the	command	line"	OFF)

For	the	 	BOOL		datatype,	there	are	several	different	wordings	for	 	ON		and	 	OFF	.

See	cmake-variables	for	a	listing	of	known	variables	in	CMake.

Environment	variables

You	can	also	 	set(ENV{variable_name}	value)		and	get	 	$ENV{variable_name}		environment	variables,	though	it	is	generally	a
very	good	idea	to	avoid	them.

The	Cache

The	cache	is	actually	just	a	text	file,	 	CMakeCache.txt	,	that	gets	created	in	the	build	directory	when	you	run	CMake.	This	is	how
CMake	remembers	anything	you	set,	so	you	don't	have	to	re-list	your	options	every	time	you	rerun	CMake.

Properties

The	other	way	CMake	stores	information	is	in	properties.	This	is	like	a	variable,	but	it	is	attached	to	some	other	item,	like	a
directory	or	a	target.	A	global	property	can	be	a	useful	uncached	global	variable.	Many	target	properties	are	initialized	from	a
matching	variable	with	 	CMAKE_		at	the	front.	So	setting	 	CMAKE_CXX_STANDARD	,	for	example,	will	mean	that	all	new	targets	created
will	have	 	CXX_STANDARD		set	to	that	when	they	are	created.	There	are	two	ways	to	set	properties:

set_property(TARGET	TargetName

													PROPERTY	CXX_STANDARD	11)

set_target_properties(TargetName	PROPERTIES

																						CXX_STANDARD	11)

The	first	form	is	more	general,	and	can	set	multiple	targets/files/tests	at	once,	and	has	useful	options.	The	second	is	a	shortcut	for
setting	several	properties	on	one	target.	And	you	can	get	properties	similarly:

get_property(ResultVariable	TARGET	TargetName	PROPERTY	CXX_STANDARD)

See	cmake-properties	for	a	listing	of	all	known	properties.	You	can	also	make	your	own	in	some	cases.

.	 	if		statements	are	a	bit	odd	in	that	they	can	take	the	variable	with	or	without	the	surrounding	syntax;	this	is	there	for
historical	reasons:	 	if		predates	the	 	${}		syntax.	↩

.	Interface	targets,	for	example,	may	have	limits	on	custom	properties	that	are	allowed.	↩

2

1

2

Variables	and	the	Cache

30

https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html
https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html

Programming	in	CMake

Control	flow

CMake	has	an	 	if		statement,	though	over	the	years	it	has	become	rather	complex.	There	are	a	series	of	all	caps	keywords	you
can	use	inside	an	if	statement,	and	you	can	often	refer	to	variables	by	either	directly	by	name	or	using	the	 	${}		syntax	(the	if
statement	historically	predates	variable	expansion).	An	example	if	statement:

if(variable)

				#	If	variable	is	`ON`,	`YES`,	`TRUE`,	`Y`,	or	non	zero	number

else()

				#	If	variable	is	`0`,	`OFF`,	`NO`,	`FALSE`,	`N`,	`IGNORE`,	`NOTFOUND`,	`""`,	or	ends	in	`-NOTFOUND`

endif()

#	If	variable	does	not	expand	to	one	of	the	above,	CMake	will	expand	it	then	try	again

Since	this	can	be	a	little	confusing	if	you	explicitly	put	a	variable	expansion,	like	 	${variable}	,	due	to	the	potential	expansion	of
an	expansion,	a	policy	(CMP0054)	was	added	in	CMake	3.1+	that	keeps	a	quoted	expansion	from	being	expanded	yet	again.	So,
as	long	as	the	minimum	version	of	CMake	is	3.1+,	you	can	do:

if("${variable}")

				#	True	if	variable	is	not	false-like

else()

				#	Note	that	undefined	variables	would	be	`""`	thus	false

endif()

There	are	a	variety	of	keywords	as	well,	such	as:

Unary:	 	NOT	,	 	TARGET	,	 	EXISTS		(file),	 	DEFINED	,	etc.
Binary:	 	STREQUAL	,	 	AND	,	 	OR	,	 	MATCHES		(regular	expression),	 	VERSION_LESS	,	 	VERSION_LESS_EQUAL		(CMake	3.7+),	etc.
Parentheses	can	be	used	to	group

generator-expressions

generator-expressions	are	really	powerful,	but	a	bit	odd	and	specialized.	Most	CMake	commands	happen	at	configure	time,
include	the	if	statements	seen	above.	But	what	if	you	need	logic	to	occur	at	build	time	or	even	install	time?	Generator	expressions
were	added	for	this	purpose. 	They	are	evaluated	in	target	properties.

The	simplest	generator	expressions	are	informational	expressions,	and	are	of	the	form	 	$<KEYWORD>	;	they	evaluate	to	a	piece	of
information	relevant	for	the	current	configuration.	The	other	form	is	 	$<KEYWORD:value>	,	where	 	KEYWORD		is	a	keyword	that
controls	the	evaluation,	and	value	is	the	item	to	evaluate	(an	informational	expression	keyword	is	allowed	here,	too).	If
KEYWORD	is	a	generator	expression	or	variable	that	evaluates	to	0	or	1,	 	value		is	substituted	if	1	and	not	if	0.	You	can	nest
generator	expressions,	and	you	can	use	variables	to	make	reading	nested	variables	bearable.	Some	expressions	allow	multiple
values,	separated	by	commas.

If	you	want	to	put	a	compile	flag	only	for	the	DEBUG	configuration,	for	example,	you	could	do:

target_compile_options(MyTarget	PRIVATE	"$<$<CONFIG:Debug>:--my-flag>")

This	is	a	newer,	better	way	to	add	things	than	using	specialized	 	*_DEBUG		variables,	and	generalized	to	all	the	things	generator
expressions	support.	Note	that	you	should	never,	never	use	the	configure	time	value	for	the	current	configuration,	because	multi-
configuration	generators	like	IDEs	do	not	have	a	"current"	configuration	at	configure	time,	only	at	build	time	through	generator

1

2

Programming	in	CMake

31

https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/policy/CMP0054.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

expressions	and	custom	 	*_<CONFIG>		variables.

Other	common	uses	for	generator	expressions:

Limiting	an	item	to	a	certain	language	only,	such	as	CXX,	to	avoid	it	mixing	with	something	like	CUDA,	or	wrapping	it	so
that	it	is	different	depending	on	target	language.
Accessing	configuration	dependent	properties,	like	target	file	location.
Giving	a	different	location	for	build	and	install	directories.

That	last	one	is	very	common.	You'll	see	something	like	this	in	almost	every	package	that	supports	installing:

target_include_directories(

				MyTarget

		PUBLIC

				$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>

				$<INSTALL_INTERFACE:include>

)

Macros	and	Functions

You	can	define	your	own	CMake	 	function		or	 	macro		easily.	The	only	difference	between	a	function	and	a	macro	is	scope;
macros	don't	have	one.	So,	if	you	set	a	variable	in	a	function	and	want	it	to	be	visible	outside,	you'll	need	 	PARENT_SCOPE	.	Nesting
functions	therefore	is	a	bit	tricky,	since	you'll	have	to	explicitly	set	the	variables	you	want	visible	to	the	outside	world	to
	PARENT_SCOPE		in	each	function.	But,	functions	don't	"leak"	all	their	variables	like	macros	do.	For	the	following	examples,	I'll	use
functions.

An	example	of	a	simple	function	is	as	follows:

function(SIMPLE	REQUIRED_ARG)

				message(STATUS	"Simple	arguments:	${REQUIRED_ARG},	followed	by	${ARGN}")

				set(${REQUIRED_ARG}	"From	SIMPLE"	PARENT_SCOPE)

endfunction()

simple(This	Foo	Bar)

message("Output:	${This}")

The	output	would	be:

--	Simple	arguments:	This,	followed	by	Foo;Bar

Output:	From	SIMPLE

If	you	want	positional	arguments,	they	are	listed	explicitly,	and	all	other	arguments	are	collected	in	 	ARGN		(ARGV		holds	all
arguments,	even	the	ones	you	list).	You	have	to	work	around	the	fact	that	CMake	does	not	have	return	values	by	setting	variables.
In	the	example	above,	you	can	explicitly	give	a	variable	name	to	set.

Arguments

CMake	has	a	named	variable	system	that	you've	already	seen	in	most	of	the	build	in	CMake	functions.	You	can	use	it	with	the
	cmake_parse_arguments		function.	If	you	want	to	support	a	version	of	CMake	less	than	3.5,	you'll	want	to	also	include	the
CMakeParseArguments	module,	which	is	where	it	used	to	live	before	becoming	a	built	in	command.	Here	is	an	example	of	how	to
use	it:

function(COMPLEX)

				cmake_parse_arguments(

								COMPLEX_PREFIX

Programming	in	CMake

32

https://cmake.org/cmake/help/latest/command/function.html
https://cmake.org/cmake/help/latest/command/macro.html
https://cmake.org/cmake/help/latest/command/cmake_parse_arguments.html
https://cmake.org/cmake/help/latest/module/CMakeParseArguments.html

								"SINGLE;ANOTHER"

								"ONE_VALUE;ALSO_ONE_VALUE"

								"MULTI_VALUES"

								${ARGN}

)

endfunction()

complex(SINGLE	ONE_VALUE	value	MULTI_VALUES	some	other	values)

Inside	the	function	after	this	call,	you'll	find:

COMPLEX_PREFIX_SINGLE	=	TRUE

COMPLEX_PREFIX_ANOTHER	=	FALSE

COMPLEX_PREFIX_ONE_VALUE	=	"value"

COMPLEX_PREFIX_ALSO_ONE_VALUE	=	<UNDEFINED>

COMPLEX_PREFIX_MULTI_VALUES	=	"some;other;values"

If	you	look	at	the	official	page,	you'll	see	a	slightly	different	method	using	set	to	avoid	explicitly	writing	the	semicolons	in	the	list;
feel	free	to	use	the	structure	you	like	best.	You	can	mix	it	with	the	positional	arguments	listed	above;	any	remaining	arguments
(therefore	optional	positional	arguments)	are	in	 	COMPLEX_PREFIX_UNPARSED_ARGUMENTS	.

.	They	act	as	if	they	are	evaluated	at	build/install	time,	though	actually	they	are	evaluated	for	each	build	configuration.	↩

.	The	CMake	docs	splits	expressions	into	Informational,	Logical,	and	Output.	↩

1

2

Programming	in	CMake

33

Communication	with	your	code

Configure	File

CMake	allows	you	to	access	CMake	variables	from	your	code	using	 	configure_file	.	This	command	copies	a	file	(traditionally
ending	in	 	.in)	from	one	place	to	another,	substituting	all	CMake	variables	it	finds.	If	you	want	to	avoid	replacing	existing	 	${}	
syntax	in	your	input	file,	use	the	 	@ONLY		keyword.	There's	also	a	 	COPY_ONLY		keyword	if	you	are	just	using	this	as	a	replacement
for	 	file(COPY	.

This	functionality	is	used	quite	frequently;	for	example,	on	 	Version.h.in	:

Version.h.in

#pragma	once

#define	MY_VERSION_MAJOR	@PROJECT_VERSION_MAJOR@

#define	MY_VERSION_MINOR	@PROJECT_VERSION_MINOR@

#define	MY_VERSION_PATCH	@PROJECT_VERSION_PATCH@

#define	MY_VERSION_TWEAK	@PROJECT_VERSION_TWEAK@

#define	MY_VERSION	"@PROJECT_VERSION@"

CMake	lines:

configure_file	(

				"${PROJECT_SOURCE_DIR}/include/My/Version.h.in"

				"${PROJECT_BINARY_DIR}/include/My/Version.h"

)

You	should	include	the	binary	include	directory	as	well	when	building	your	project.	If	you	want	to	put	any	true/false	variables	in	a
header,	CMake	has	C	specific	 	#cmakedefine		and	 	#cmakedefine01		replacements	to	make	appropriate	define	lines.

You	can	also	(and	often	do)	use	this	to	produce	 	.cmake		files,	such	as	the	configure	files	(see	installing).

Reading	files

The	other	direction	can	be	done	too;	you	can	read	in	something	(like	a	version)	from	your	source	files.	If	you	have	a	header	only
library	that	you'd	like	to	make	available	with	or	without	CMake,	for	example,	then	this	would	be	the	best	way	to	handle	a	version.
This	would	look	something	like	this:

#	Assuming	the	canonical	version	is	listed	in	a	single	line

#	This	would	be	in	several	parts	if	picking	up	from	MAJOR,	MINOR,	etc.

set(VERSION_REGEX	"#define	MY_VERSION[\t]+\"(.+)\"")

#	Read	in	the	line	containing	the	version

file(STRINGS	"${CMAKE_CURRENT_SOURCE_DIR}/include/My/Version.hpp"

				VERSION_STRING	REGEX	${VERSION_REGEX})

#	Pick	out	just	the	version

string(REGEX	REPLACE	${VERSION_REGEX}	"\\1"	VERSION_STRING	"${VERSION_STRING}")

#	Automatically	getting	PROJECT_VERSION_MAJOR,	My_VERSION_MAJOR,	etc.

project(My	LANGUAGES	CXX	VERSION	${VERSION_STRING})

Communicating	with	your	code

34

https://cliutils.gitlab.io/modern-cmake/chapters/install/installing.html

Above,	 	file(STRINGS	file_name	variable_name	REGEX	regex)		picks	lines	that	match	a	regex;	and	the	same	regex	is	used	to
then	pick	out	the	parentheses	capture	group	with	the	version	part.	Replace	is	used	with	back	substitution	to	output	only	that	one
group.

Communicating	with	your	code

35

How	to	structure	your	project
The	following	information	is	biased.	But	in	a	good	way,	I	think.	I'm	going	to	tell	you	how	to	structure	the	directories	in	your
project.	This	is	based	on	convention,	but	will	help	you:

Easily	read	other	projects	following	the	same	patterns,
Avoid	a	pattern	that	causes	conflicts,
Keep	from	muddling	and	complicating	your	build.

First,	this	is	what	your	files	should	look	like	when	you	start	if	your	project	is	creatively	called	 	project	,	with	a	library	called
	lib	,	and	a	executable	called	 	app	:

-	project

		-	.gitignore

		-	README.md

		-	LICENSE.md

		-	CMakeLists.txt

		-	cmake

				-	FindSomeLib.cmake

				-	something_else.cmake

		-	include

				-	project

						-	lib.hpp

		-	src

				-	CMakeLists.txt

				-	lib.cpp

		-	apps

				-	CMakeLists.txt

				-	app.cpp

		-	tests

				-	CMakeLists.txt

				-	testlib.cpp

		-	docs

				-	CMakeLists.txt

		-	extern

				-	googletest

		-	scripts

				-	helper.py

The	names	are	not	absolute;	you'll	see	contention	about	 	test/		vs.	 	tests/	,	and	the	application	folder	may	be	called	something
else	(or	not	exist	for	a	library-only	project).	You'll	also	sometime	see	a	 	python		folder	for	python	bindings,	or	a	 	cmake		folder
for	helper	CMake	files,	like	 	Find<library>.cmake		files.	But	the	basics	are	there.

Notice	a	few	things	already	apparent;	the	 	CMakeLists.txt		files	are	split	up	over	all	source	directories,	and	are	not	in	the	include
directories.	This	is	because	you	should	be	able	to	copy	the	contents	of	the	include	directory	to	 	/usr/include		or	similar	directly
(except	for	configuration	headers,	which	I	go	over	in	another	chapter),	and	not	have	any	extra	files	or	cause	any	conflicts.	That's
also	why	there	is	a	directory	for	your	project	inside	the	include	directory.	Use	 	add_subdirectory		to	add	a	subdirectory
containing	a	 	CMakeLists.txt	.

You	often	want	a	 	cmake		folder,	with	all	of	your	helper	modules.	This	is	where	your	 	Find*.cmake		files	go.	An	set	of	some
common	helpers	is	at	github.com/CLIUtils/cmake.	To	add	this	folder	to	your	CMake	path:

set(CMAKE_MODULE_PATH	"${PROJECT_SOURCE_DIR}/cmake"	${CMAKE_MODULE_PATH})

Your	 	extern		folder	should	contain	git	submodules	almost	exclusively.	That	way,	you	can	control	the	version	of	the
dependencies	explicitly,	but	still	upgrade	easily.	See	the	Testing	chapter	for	an	example	of	adding	a	submodule.

How	to	Structure	Your	Project

36

https://github.com/CLIUtils/cmake

You	should	have	something	like	 	/build*		in	your	 	.gitignore	,	so	that	users	can	make	build	directories	in	the	source	directory
and	use	those	to	build.	A	few	packages	prohibit	this,	but	it's	much	better	than	doing	a	true	out-of-source	build	and	having	to	type
something	different	for	each	package	you	build.

If	you	want	to	avoid	the	build	directory	being	in	a	valid	source	directory,	add	this	near	the	top	of	your	CMakeLists:

###	Require	out-of-source	builds

file(TO_CMAKE_PATH	"${PROJECT_BINARY_DIR}/CMakeLists.txt"	LOC_PATH)

if(EXISTS	"${LOC_PATH}")

				message(FATAL_ERROR	"You	cannot	build	in	a	source	directory	(or	any	directory	with	a	CMakeLists.txt	file).	

Please	make	a	build	subdirectory.	Feel	free	to	remove	CMakeCache.txt	and	CMakeFiles.")

endif()

See	the	extended	code	example	here.

How	to	Structure	Your	Project

37

https://gitlab.com/CLIUtils/modern-cmake/tree/master/examples/extended-project

Running	other	programs

Running	a	command	at	configure	time

Running	a	command	at	configure	time	is	relatively	easy.	Use	 	execute_process		to	run	a	process	and	access	the	results.	It	is
generally	a	good	idea	to	avoid	hard	coding	a	program	path	into	your	CMake;	you	can	use	 	${CMAKE_COMMAND}	,
	find_package(Git)	,	or	 	find_program		to	get	access	to	a	command	to	run.	Use	 	RESULT_VARIABLE		to	check	the	return	code	and
	OUTPUT_VARIABLE		to	get	the	output.

Here	is	an	example	that	updates	all	git	submodules:

find_package(Git	QUIET)

if(GIT_FOUND	AND	EXISTS	"${PROJECT_SOURCE_DIR}/.git")

				execute_process(COMMAND	${GIT_EXECUTABLE}	submodule	update	--init	--recursive

																				WORKING_DIRECTORY	${CMAKE_CURRENT_SOURCE_DIR}

																				RESULT_VARIABLE	GIT_SUBMOD_RESULT)

				if(NOT	GIT_SUBMOD_RESULT	EQUAL	"0")

								message(FATAL_ERROR	"git	submodule	update	--init	--recursive	failed	with	${GIT_SUBMOD_RESULT},	please	c

heckout	submodules")

				endif()

endif()

Running	a	command	at	build	time
Build	time	commands	are	a	bit	trickier.	The	main	complication	comes	from	the	target	system;	when	do	you	want	your	command
to	run?	Does	it	produce	an	output	that	another	target	needs?	With	this	in	mind,	here	is	an	example	that	calls	a	Python	script	to
generate	a	header	file:

find_package(PythonInterp	REQUIRED)

add_custom_command(OUTPUT	"${CMAKE_CURRENT_BINARY_DIR}/include/Generated.hpp"

				COMMAND	"${PYTHON_EXECUTABLE}"	"${CMAKE_CURRENT_SOURCE_DIR}/scripts/GenerateHeader.py"	--argument

				DEPENDS	some_target)

add_custom_target(generate_header	ALL

				DEPENDS	"${CMAKE_CURRENT_BINARY_DIR}/include/Generated.hpp")

install(FILES	${CMAKE_CURRENT_BINARY_DIR}/include/Generated.hpp	DESTINATION	include)

Here,	the	generation	happens	after	 	some_target		is	complete,	and	happens	when	you	run	make	without	a	target	(ALL).	If	you
make	this	a	dependency	of	another	target	with	 	add_dependencies	,	you	could	avoid	the	 	ALL		keyword.	Or,	you	could	require
that	a	user	explicitly	builds	the	 	generate_header		target	when	making.

Included	common	utilities

A	useful	tool	in	writing	CMake	builds	that	work	cross-platform	is	 	cmake	-E	<mode>		(seen	in	CMake	files	as	 	${CMAKE_COMMAND}
-E).	This	mode	allows	CMake	to	do	a	variety	of	things	without	calling	system	tools	explicitly,	like	 	copy	,	 	make_directory	,
and	 	remove	.	It	is	mostly	used	for	the	build	time	commands.	Note	that	the	very	useful	 	create_symlink		mode	used	to	be	Unix
only,	but	was	added	for	Windows	in	CMake	3.13.	See	the	docs.

Running	Other	Programs

38

https://cmake.org/cmake/help/latest/command/execute_process.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html#command-line-tool-mode

A	simple	example
This	is	a	simple	yet	complete	example	of	a	proper	CMakeLists.	For	this	program,	we	have	one	library	(MyLibExample)	with	a
header	file	and	a	source	file,	and	one	application,	MyExample,	with	one	source	file.

#	Almost	all	CMake	files	should	start	with	this

#	You	should	always	specify	a	range	with	the	newest

#	and	oldest	tested	versions	of	CMake.	This	will	ensure

#	you	pick	up	the	best	policies.

cmake_minimum_required(VERSION	3.1...3.29)

#	This	is	your	project	statement.	You	should	always	list	languages;

#	Listing	the	version	is	nice	here	since	it	sets	lots	of	useful	variables

project(

		ModernCMakeExample

		VERSION	1.0

		LANGUAGES	CXX)

#	If	you	set	any	CMAKE_	variables,	that	can	go	here.

#	(But	usually	don't	do	this,	except	maybe	for	C++	standard)

#	Find	packages	go	here.

#	You	should	usually	split	this	into	folders,	but	this	is	a	simple	example

#	This	is	a	"default"	library,	and	will	match	the	***	variable	setting.

#	Other	common	choices	are	STATIC,	SHARED,	and	MODULE

#	Including	header	files	here	helps	IDEs	but	is	not	required.

#	Output	libname	matches	target	name,	with	the	usual	extensions	on	your	system

add_library(MyLibExample	simple_lib.cpp	simple_lib.hpp)

#	Link	each	target	with	other	targets	or	add	options,	etc.

#	Adding	something	we	can	run	-	Output	name	matches	target	name

add_executable(MyExample	simple_example.cpp)

#	Make	sure	you	link	your	targets	with	this	command.	It	can	also	link	libraries	and

#	even	flags,	so	linking	a	target	that	does	not	exist	will	not	give	a	configure-time	error.

target_link_libraries(MyExample	PRIVATE	MyLibExample)

The	complete	example	is	available	in	examples	folder.

A	larger,	multi-file	example	is	also	available.

A	Simple	Example

39

https://gitlab.com/CLIUtils/modern-cmake/tree/master/examples/simple-project
https://gitlab.com/CLIUtils/modern-cmake/tree/master/examples/extended-project

Adding	features
This	section	covers	adding	common	features	to	your	CMake	project.	You'll	learn	how	to	add	a	variety	of	options	commonly
needed	in	C++	projects,	like	C++11	support,	as	well	as	how	to	support	IDEs	and	more.

Default	build	type

CMake	normally	does	a	"non-release,	non	debug"	empty	build	type;	if	you	prefer	to	set	the	default	build	type	yourself,	you	can
follow	this	recipe	for	the	default	build	type	modified	from	the	Kitware	blog:

set(default_build_type	"Release")

if(NOT	CMAKE_BUILD_TYPE	AND	NOT	CMAKE_CONFIGURATION_TYPES)

		message(STATUS	"Setting	build	type	to	'${default_build_type}'	as	none	was	specified.")

		set(CMAKE_BUILD_TYPE	"${default_build_type}"	CACHE

						STRING	"Choose	the	type	of	build."	FORCE)

		#	Set	the	possible	values	of	build	type	for	cmake-gui

		set_property(CACHE	CMAKE_BUILD_TYPE	PROPERTY	STRINGS

				"Debug"	"Release"	"MinSizeRel"	"RelWithDebInfo")

endif()

Adding	Features

40

https://blog.kitware.com/cmake-and-the-default-build-type/

C++11	and	beyond
C++11	is	supported	by	CMake.	Really.	Just	not	in	CMake	2.8,	because,	guess	what,	C++11	didn't	exist	in	2009	when	2.0	was
released.	As	long	as	you	are	using	CMake	3.1	or	newer,	you	should	be	fine,	there	are	two	different	ways	to	enable	support.	And	as
you'll	soon	see,	there's	even	better	support	in	CMake	3.8+.	I'll	start	with	that,	since	this	is	Modern	CMake.

CMake	3.8+:	Meta	compiler	features

As	long	as	you	can	require	that	a	user	install	CMake,	you'll	have	access	to	the	newest	way	to	enable	C++	standards.	This	is	the
most	powerful	way,	with	the	nicest	syntax	and	the	best	support	for	new	standards,	and	the	best	target	behavior	for	mixing
standards	and	options.	Assuming	you	have	a	target	named	 	myTarget	,	it	looks	like	this:

target_compile_features(myTarget	PUBLIC	cxx_std_11)

set_target_properties(myTarget	PROPERTIES	CXX_EXTENSIONS	OFF)

For	the	first	line,	we	get	to	pick	between	 	cxx_std_11	,	 	cxx_std_14	,	and	 	cxx_std_17	.	The	second	line	is	optional,	but	will
avoid	extensions	being	added;	without	it	you'd	get	things	like	 	-std=g++11		replacing	 	-std=c++11	.	The	first	line	even	works	on
	INTERFACE		targets;	only	actual	compiled	targets	can	use	the	second	line.

If	a	target	further	down	the	dependency	chain	specifies	a	higher	C++	level,	this	interacts	nicely.	It's	really	just	a	more	advanced
version	of	the	following	method,	so	it	interacts	nicely	with	that,	too.

CMake	3.1+:	Compiler	features

You	can	ask	for	specific	compiler	features	to	be	available.	This	was	more	granular	than	asking	for	a	C++	version,	though	it's	a	bit
tricky	to	pick	out	just	the	features	a	package	is	using	unless	you	wrote	the	package	and	have	a	good	memory.	Since	this	ultimately
checks	against	a	list	of	options	CMake	knows	your	compiler	supports	and	picks	the	highest	flag	indicated	in	that	list,	you	don't
have	to	specify	all	the	options	you	need,	just	the	rarest	ones.	The	syntax	is	identical	to	the	section	above,	you	just	have	a	list	of
options	to	pick	instead	of	 	cxx_std_*		options.	See	the	whole	list	here.

If	you	have	optional	features,	you	can	use	the	list	 	CMAKE_CXX_COMPILE_FEATURES		and	use	 	if(...	IN_LIST	...)		from	CMake
3.3+	to	see	if	that	feature	is	supported,	and	add	it	conditionally.	See	the	docs	here	for	other	use	cases.

CMake	3.1+:	Global	and	property	settings
There	is	another	way	that	C++	standards	are	supported;	a	specific	set	of	three	properties	(both	global	and	target	level).	The	global
properties	are:

set(CMAKE_CXX_STANDARD	11	CACHE	STRING	"The	C++	standard	to	use")

set(CMAKE_CXX_STANDARD_REQUIRED	ON)

set(CMAKE_CXX_EXTENSIONS	OFF)

The	first	line	sets	a	C++	standard	level,	and	the	second	tells	CMake	to	use	it,	and	the	final	line	is	optional	and	ensures	 	-
std=c++11		vs.	something	like	 	-std=g++11	.	This	method	isn't	bad	for	a	final	package,	but	shouldn't	be	used	by	a	library.	You
should	always	set	this	as	a	cached	variable,	so	you	can	override	it	to	try	a	new	version	easily	(or	if	this	gets	used	as	a	library,	this
is	the	only	way	to	override	it	-	but	again,	don't	use	this	for	libraries).	You	can	also	set	these	values	on	a	target:

set_target_properties(myTarget	PROPERTIES

				CXX_STANDARD	11

C++11	and	Beyond

41

https://cmake.org/cmake/help/latest/prop_gbl/CMAKE_CXX_KNOWN_FEATURES.html
https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html

				CXX_STANDARD_REQUIRED	YES

				CXX_EXTENSIONS	NO

)

Which	is	better,	but	still	doesn't	have	the	sort	of	explicit	control	that	compiler	features	have	for	populating	 	PRIVATE		and
	INTERFACE		properties,	so	it	really	is	only	useful	on	final	targets.

You	can	find	more	information	about	the	final	two	methods	on	Craig	Scott's	useful	blog	post.

Don't	set	manual	flags	yourself.	You'll	then	become	responsible	for	mainting	correct	flags	for	every	release	of	every
compiler,	error	messages	for	unsupported	compilers	won't	be	useful,	and	some	IDEs	might	not	pick	up	the	manual	flags.

C++11	and	Beyond

42

https://crascit.com/2015/03/28/enabling-cxx11-in-cmake/

Adding	Features
There	are	lots	of	compiler	and	linker	settings.	When	you	need	to	add	something	special,	you	could	check	first	to	see	if	CMake
supports	it;	if	it	does,	you	can	avoid	explicitly	tying	yourself	to	a	compiler	version.	And,	better	yet,	you	explain	what	you	mean	in
your	CMakeLists,	rather	than	spewing	flags.

The	first	and	most	common	feature	was	C++	standards	support,	which	got	it's	own	chapter.

Position	independent	code

This	is	best	known	as	the	 	-fPIC		flag.	Much	of	the	time,	you	don't	need	to	do	anything.	CMake	will	include	the	flag	for	 	SHARED	
or	 	MODULE		libraries.	If	you	do	explicitly	need	it:

set(CMAKE_POSITION_INDEPENDENT_CODE	ON)

will	do	it	globally,	or:

set_target_properties(lib1	PROPERTIES	POSITION_INDEPENDENT_CODE	ON)

to	explicitly	turn	it	 	ON		(or	 	OFF)	for	a	target.

Little	libraries
If	you	need	to	link	to	the	 	dl		library,	with	 	-ldl		on	Linux,	just	use	the	built-in	CMake	variable	 	${CMAKE_DL_LIBS}		in	a
	target_link_libraries		command.	No	module	or	 	find_package		needed.	(This	adds	whatever	is	needed	to	get	 	dlopen		and
	dlclose)

Unfortunately,	the	math	library	is	not	so	lucky.	If	you	need	to	explicitly	link	to	it,	you	can	always	do
	target_link_libraries(MyTarget	PUBLIC	m)	,	but	it	might	be	better	to	use	CMake's	generic	 	find_library	:

find_library(MATH_LIBRARY	m)

if(MATH_LIBRARY)

				target_link_libraries(MyTarget	PUBLIC	${MATH_LIBRARY})

endif()

You	can	pretty	easily	find	 	Find*.cmake	's	for	this	and	other	libraries	that	you	need	with	a	quick	search;	most	major	packages
have	a	helper	library	of	CMake	modules.	See	the	chapter	on	existing	package	inclusion	for	more.

Interprocedural	optimization
	INTERPROCEDURAL*OPTIMIZATION	,	best	known	as	_link	time	optimization*	and	the	 	-flto		flag,	is	available	on	very	recent
versions	of	CMake.	You	can	turn	this	on	with	 	CMAKE_INTERPROCEDURAL_OPTIMIZATION		(CMake	3.9+	only)	or	the
	INTERPROCEDURAL_OPTIMIZATION		property	on	targets.	Support	for	GCC	and	Clang	was	added	in	CMake	3.8.	If	you	set
	cmake_minimum_required(VERSION	3.9)		or	better	(see	CMP0069),	setting	this	to	 	ON		on	a	target	is	an	error	if	the	compiler
doesn't	support	it.	You	can	use	check_ipo_supported(),	from	the	built-in	CheckIPOSupported	module,	to	see	if	support	is
available	before	hand.	An	example	of	3.9	style	usage:

include(CheckIPOSupported)

check_ipo_supported(RESULT	result)

Small	but	common	needs

43

https://cmake.org/cmake/help/latest/variable/CMAKE_POSITION_INDEPENDENT_CODE.html
https://cmake.org/cmake/help/latest/variable/CMAKE_DL_LIBS.html
https://cmake.org/cmake/help/latest/command/find_library.html
https://cmake.org/cmake/help/latest/prop_tgt/INTERPROCEDURAL*OPTIMIZATION.html
https://cmake.org/cmake/help/latest//CMAKE_INTERPROCEDURAL_OPTIMIZATION.html
https://cmake.org/cmake/help/latest/prop_tgt/INTERPROCEDURAL_OPTIMIZATION.html
https://cmake.org/cmake/help/latest/policy/CMP0069.html
https://cmake.org/cmake/help/latest/module/CheckIPOSupported.html

if(result)

		set_target_properties(foo	PROPERTIES	INTERPROCEDURAL_OPTIMIZATION	TRUE)

endif()

Small	but	common	needs

44

CCache	and	Utilities
Over	the	versions,	common	utilities	that	help	you	write	good	code	have	had	support	added	to	CMake.	This	is	usually	in	the	form
of	a	property	and	matching	 	CMAKE_*		initialization	variable.	The	feature	is	not	meant	to	be	tied	to	one	special	program,	but	rather
any	program	that	is	somewhat	similar	in	behavior.

All	of	these	take	 	;		separated	values	(a	standard	list	in	CMake)	that	describe	the	program	and	options	that	you	should	run	on	the
source	files	of	this	target.

CCache

Set	the	 	CMAKE_<LANG>_COMPILER_LAUNCHER		variable	or	the	 	<LANG>_COMPILER_LAUNCHER		property	on	a	target	to	use	something	like
CCache	to	"wrap"	the	compilation	of	the	target.	Support	for	CCache	has	been	expanding	in	the	latest	versions	of	CMake.	In
practice,	this	tends	to	look	like	this:

find_program(CCACHE_PROGRAM	ccache)

if(CCACHE_PROGRAM)

				set(CMAKE_CXX_COMPILER_LAUNCHER	"${CCACHE_PROGRAM}")

				set(CMAKE_CUDA_COMPILER_LAUNCHER	"${CCACHE_PROGRAM}")	#	CMake	3.9+

endif()

Utilities

Set	the	following	properties	or	 	CMAKE_*		initializer	variables	to	the	command	line	for	the	tools.	Most	of	them	are	limited	to	C	or
CXX	with	make	or	ninja	generators.

	<LANG>_CLANG_TIDY	:	CMake	3.6+
	<LANG>_CPPCHECK	

	<LANG>_CPPLINT	

	<LANG>_INCLUDE_WHAT_YOU_USE	

Clang	tidy
This	is	the	command	line	for	running	clang-tidy,	as	a	list	(remember,	a	semicolon	separated	string	is	a	list).

Here	is	a	simple	example	of	using	Clang-Tidy:

The	 	-fix		part	is	optional,	and	will	modify	your	source	files	to	try	to	fix	the	tidy	warning	issued.	If	you	are	working	in	a	git
repository,	this	is	fairly	safe	as	you	can	see	what	has	changed.	However,	make	sure	you	do	not	run	your	makefile/ninja	build	in
parallel!	This	will	not	work	very	well	at	all	if	it	tries	to	fix	the	same	header	twice.

If	you	want	to	explicitly	use	the	target	form	to	ensure	you	only	call	this	on	your	local	targets,	you	can	set	a	variable	(maybe
something	like	 	DO_CLANG_TIDY)	instead	of	the	 	CMAKE_CXX_CLANG_TIDY		variable,	then	add	it	to	your	target	properties	as	you
create	them.	You	can	find	clang-tidy	in	your	path	like	this:

find_program(

				CLANG_TIDY_EXE

~/package	#	cmake	-S	.	-B	build-tidy	-DCMAKE_CXX_CLANG_TIDY="$(which	clang-tidy);-fix"

~/package	#	cmake	--build	build	-j	1

Utilities

45

				NAMES	"clang-tidy"

				DOC	"Path	to	clang-tidy	executable"

)

Include	what	you	use
This	is	an	example	for	using	include	what	you	use.	First,	you'll	need	to	have	the	tool,	such	as	in	a	docker	container	or	with	brew
(macOS)	with	 	brew	install	include-what-you-use	.	Then,	you	can	pass	this	into	your	build	without	modifying	the	source:

Finally,	you	can	collect	the	output	and	(optionally)	apply	the	fixes:

(You	should	check	the	fixes	first,	or	touch	them	up	after	applying!)

Link	what	you	use

There	is	a	boolean	target	property,	 	LINK_WHAT_YOU_USE	,	that	will	check	for	extraneous	files	when	linking.

Clang-format

Clang-format	doesn't	really	have	an	integration	with	CMake,	unfortunately.	You	could	make	a	custom	target	(See	this	post),	or
you	can	run	it	manually.	An	interesting	project	that	I	have	not	really	tried	is	here;	it	adds	a	format	target	and	even	makes	sure	that
you	can't	commit	unformatted	files.

The	following	two	line	would	do	that	in	a	git	repository	in	bash	(assuming	you	have	a	 	.clang-format		file):

~/package	#	cmake	-S	.	-B	build-iwyu	-DCMAKE_CXX_INCLUDE_WHAT_YOU_USE=include-what-you-use

~/package	#	cmake	--build	build-iwyu	2>	iwyu.out

~/package	#	fix_includes.py	<	iwyu.out

gitbook	$	git	ls-files	--	'*.cpp'	'*.h'	|	xargs	clang-format	-i	-style=file

gitbook	$	git	diff	--exit-code	--color

Utilities

46

https://arcanis.me/en/2015/10/17/cppcheck-and-clang-format
https://github.com/kbenzie/git-cmake-format

Useful	Modules
There	are	a	ton	of	useful	modules	in	CMake's	modules	collection;	but	some	of	them	are	more	useful	than	others.	Here	are	a	few
highlights.

CMakeDependentOption

This	adds	a	command	 	cmake_dependent_option		that	sets	an	option	based	on	another	set	of	variables	being	true.	It	looks	like	this:

include(CMakeDependentOption)

cmake_dependent_option(BUILD_TESTS	"Build	your	tests"	ON	"VAL1;VAL2"	OFF)

which	is	just	a	shortcut	for	this:

if(VAL1	AND	VAL2)

				set(BUILD_TESTS_DEFAULT	ON)

else()

				set(BUILD_TESTS_DEFAULT	OFF)

endif()

option(BUILD_TESTS	"Build	your	tests"	${BUILD_TESTS_DEFAULT})

if(NOT	BUILD_TESTS_DEFAULT)

				mark_as_advanced(BUILD_TESTS)

endif()

Note	that	 	BUILD_TESTING		is	a	better	way	to	check	for	testing	being	enabled	if	you	use	 	include(CTest)	,	since	it	is	defined	for
you.	This	is	just	an	example	of	 	CMakeDependentOption	.

CMakePrintHelpers

This	module	has	a	couple	of	handy	output	functions.	 	cmake_print_properties		lets	you	easily	print	properties.	And
	cmake_print_variables		will	print	the	names	and	values	of	any	variables	you	give	it.

CheckCXXCompilerFlag

This	checks	to	see	if	a	flag	is	supported.	For	example:

include(CheckCXXCompilerFlag)

check_cxx_compiler_flag(-someflag	OUTPUT_VARIABLE)

Note	that	 	OUTPUT_VARIABLE		will	also	appear	in	the	configuration	printout,	so	choose	a	good	name.

This	is	just	one	of	many	similar	modules,	such	as	 	CheckIncludeFileCXX	,	 	CheckStructHasMember	,	 	TestBigEndian	,	and
	CheckTypeSize		that	allow	you	to	check	for	information	about	the	system	(and	you	can	communicate	that	to	your	source	code).

	try_compile	/ 	try_run	

This	is	not	exactly	a	module,	but	is	crucial	to	many	of	the	modules	listed	above.	You	can	attempt	to	compile	(and	possibly	run)	a
bit	of	code	at	configure	time.	This	can	allow	you	to	get	information	about	the	capabilities	of	your	system.	The	basic	syntax	is:

Useful	modules

47

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html
https://cmake.org/cmake/help/latest/module/CMakeDependentOption.html
https://cmake.org/cmake/help/latest/module/CMakePrintHelpers.html
https://cmake.org/cmake/help/latest/module/CheckCXXCompilerFlag.html
https://cmake.org/cmake/help/latest/command/try_compile.html
https://cmake.org/cmake/help/latest/command/try_run.html

This	is	not	exactly	a	module,	but	is	crucial	to	many	of	the	modules	listed	above.	You	can	attempt	to	compile	(and	possibly	run)	a
bit	of	code	at	configure	time.	This	can	allow	you	to	get	information	about	the	capabilities	of	your	system.	The	basic	syntax	is:

try_compile(

		RESULT_VAR

				bindir

		SOURCES

				source.cpp

)

There	are	lots	of	options	you	can	add,	like	 	COMPILE_DEFINITIONS	.	In	CMake	3.8+,	this	will	honor	the	CMake	C/C++/CUDA
standard	settings.	If	you	use	 	try_run		instead,	it	will	run	the	resulting	program	and	give	you	the	output	in
	RUN_OUTPUT_VARIABLE	.

FeatureSummary
This	is	a	fairly	useful	but	rather	odd	module.	It	allows	you	to	print	out	a	list	of	packages	what	were	searched	for,	as	well	as	any
options	you	explicitly	mark.	It's	partially	but	not	completely	tied	into	 	find_package	.	You	first	include	the	module,	as	always:

include(FeatureSummary)

Then,	for	any	find	packages	you	have	run	or	will	run,	you	can	extend	the	default	information:

set_package_properties(OpenMP	PROPERTIES

				URL	"http://www.openmp.org"

				DESCRIPTION	"Parallel	compiler	directives"

				PURPOSE	"This	is	what	it	does	in	my	package")

You	can	also	set	the	 	TYPE		of	a	package	to	 	RUNTIME	,	 	OPTIONAL	,	 	RECOMMENDED	,	or	 	REQUIRED	;	you	can't,	however,	lower	the
type	of	a	package;	if	you	have	already	added	a	 	REQUIRED		package	through	 	find_package		based	on	an	option,	you'll	see	it	listed
as	 	REQUIRED	.

And,	you	can	mark	any	options	as	part	of	the	feature	summary.	If	you	choose	the	same	name	as	a	package,	the	two	interact	with
each	other.

add_feature_info(WITH_OPENMP	OpenMP_CXX_FOUND	"OpenMP	(Thread	safe	FCNs	only)")

Then,	you	can	print	out	the	summary	of	features,	either	to	the	screen	or	a	log	file:

if(CMAKE_PROJECT_NAME	STREQUAL	PROJECT_NAME)

				feature_summary(WHAT	ENABLED_FEATURES	DISABLED_FEATURES	PACKAGES_FOUND)

				feature_summary(FILENAME	${CMAKE_CURRENT_BINARY_DIR}/features.log	WHAT	ALL)

endif()

You	can	build	any	collection	of	 	WHAT		items	that	you	like,	or	just	use	 	ALL	.

Useful	modules

48

https://cmake.org/cmake/help/latest/module/FeatureSummary.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html

Supporting	IDEs
In	general,	IDEs	are	already	supported	by	a	standard	CMake	project.	There	are	just	a	few	extra	things	that	can	help	IDEs	perform
even	better.

Folders	for	targets

Some	IDEs,	like	Xcode,	support	folders.	You	have	to	manually	enable	the	 	USE_FOLDERS		global	property	to	allow	CMake	to
organize	your	files	by	folders:

set_property(GLOBAL	PROPERTY	USE_FOLDERS	ON)

Then,	you	can	add	targets	to	folders	after	you	create	them:

set_property(TARGET	MyFile	PROPERTY	FOLDER	"Scripts")

Folders	can	be	nested	with	 	/	.

You	can	control	how	files	show	up	in	each	folder	with	regular	expressions	or	explicit	listings	in	 	source_group	:

Folders	for	files
You	can	also	control	how	the	folders	inside	targets	appear.	There	are	two	ways,	both	using	the	 	source_group		command.	The
traditional	way	is

source_group("Source	Files\\New	Directory"	REGULAR_EXPRESSION	".*\\.c[ucp]p?")

You	can	explicitly	list	files	with	 	FILES	,	or	use	a	 	REGULAR_EXPRESSION	.	This	way	you	have	complete	control	over	the	folder
structure.	However,	if	your	on-disk	layout	is	well	designed,	you	might	just	want	to	mimic	that.	In	CMake	3.8+,	you	can	do	so	very
easily	with	a	new	version	of	the	 	source_group		command:

source_group(TREE	"${CMAKE_CURRENT_SOURCE_DIR}/base/dir"	PREFIX	"Header	Files"	FILES	${FILE_LIST})

For	the	 	TREE		option,	you	should	usually	give	a	full	path	starting	with	something	like	 	${CMAKE_CURRENT_SOURCE_DIR}/		(because
the	command	interprets	paths	relative	to	the	build	directory).	The	prefix	tells	you	where	it	puts	it	into	the	IDE	structure,	and	the
	FILES		option	takes	a	list	of	files.	CMake	will	strip	the	 	TREE		path	from	the	 	FILE_LIST		path,	it	will	add	 	PREFIX	,	and	that	will
be	the	IDE	folder	structure.

Note:	If	you	need	to	support	CMake	<	3.8,	I	would	recommend	just	protecting	the	above	command,	and	only	supporting
nice	folder	layout	on	CMake	3.8+.	For	older	methods	to	do	this	folder	layout,	see	this	blog	post.

Running	with	an	IDE

To	use	an	IDE,	either	pass	 	-G"name	of	IDE"		if	CMake	can	produce	that	IDE's	files	(like	Xcode,	Visual	Studio),	or	open	the
CMakeLists.txt	file	from	your	IDE	if	that	IDE	has	built	in	support	for	CMake	(CLion,	QtCreator,	many	others).

IDEs

49

https://cmake.org/cmake/help/latest/command/source_group.html
https://cmake.org/cmake/help/latest/command/source_group.html
https://cmake.org/cmake/help/latest/command/source_group.html
http://blog.audio-tk.com/2015/09/01/sorting-source-files-and-projects-in-folders-with-cmake-and-visual-studioxcode/

Debugging	code
You	might	need	to	debug	your	CMake	build,	or	debug	your	C++	code.	Both	are	covered	here.

CMake	debugging

First,	let's	look	at	ways	to	debug	a	CMakeLists	or	other	CMake	file.

Printing	variables

The	time	honored	method	of	print	statements	looks	like	this	in	CMake:

message(STATUS	"MY_VARIABLE=${MY_VARIABLE}")

However,	a	built	in	module	makes	this	even	easier:

include(CMakePrintHelpers)

cmake_print_variables(MY_VARIABLE)

If	you	want	to	print	out	a	property,	this	is	much,	much	nicer!	Instead	of	getting	the	properties	one	by	one	of	of	each	target	(or
other	item	with	properties,	such	as	 	SOURCES	,	 	DIRECTORIES	,	 	TESTS	,	or	 	CACHE_ENTRIES		-	global	properties	seem	to	be	missing
for	some	reason),	you	can	simply	list	them	and	get	them	printed	directly:

cmake_print_properties(

				TARGETS	my_target

				PROPERTIES	POSITION_INDEPENDENT_CODE

)

Tracing	a	run

Have	you	wanted	to	watch	exactly	what	happens	in	your	CMake	file,	and	when?	The	 	--trace-source="filename"		feature	is
fantastic.	Every	line	run	in	the	file	that	you	give	will	be	echoed	to	the	screen	when	it	is	run,	letting	you	follow	exactly	what	is
happening.	There	are	related	options	as	well,	but	they	tend	to	bury	you	in	output.

For	example:

cmake	-S	.	-B	build	--trace-source=CMakeLists.txt

If	you	add	 	--trace-expand	,	the	variables	will	be	expanded	into	their	values.

Building	in	debug	mode

For	single-configuration	generators,	you	can	build	your	code	with	 	-DCMAKE_BUILD_TYPE=Debug		to	get	debugging	flags.	In	multi-
configuration	generators,	like	many	IDEs,	you	can	pick	the	configuration	in	the	IDE.	There	are	distinct	flags	for	this	mode
(variables	ending	in	 	_DEBUG		as	opposed	to	 	_RELEASE),	as	well	as	a	generator	expression	value	 	CONFIG:Debug		or
	CONFIG:Release	.

Once	you	make	a	debug	build,	you	can	run	a	debugger,	such	as	gdb	or	lldb	on	it.

Debugging

50

Including	Small	Projects
This	is	where	a	good	Git	system	plus	CMake	shines.	You	might	not	be	able	to	solve	all	the	world's	problems,	but	this	is	pretty
close	for	C++!

There	are	several	methods	listed	in	the	chapters	in	this	section.

Including	Projects

51

Git	Submodule	Method
If	you	want	to	add	a	Git	repository	on	the	same	service	(GitHub,	GitLab,	BitBucket,	etc),	the	following	is	the	correct	Git
command	to	set	that	up	as	a	submodule	in	the	 	extern		directory:

The	relative	path	to	the	repo	is	important;	it	allows	you	to	keep	the	same	access	method	(ssh	or	https)	as	the	parent	repository.
This	works	very	well	in	most	ways.	When	you	are	inside	the	submodule,	you	can	treat	it	just	like	a	normal	repo,	and	when	you	are
in	the	parent	repository,	you	can	"add"	to	change	the	current	commit	pointer.

But	the	traditional	downside	is	that	you	either	have	to	have	your	users	know	git	submodule	commands,	so	they	can	 	init		and
	update		the	repo,	or	they	have	to	add	 	--recursive		when	they	initially	clone	your	repo.	CMake	can	offer	a	solution:

find_package(Git	QUIET)

if(GIT_FOUND	AND	EXISTS	"${PROJECT_SOURCE_DIR}/.git")

#	Update	submodules	as	needed

				option(GIT_SUBMODULE	"Check	submodules	during	build"	ON)

				if(GIT_SUBMODULE)

								message(STATUS	"Submodule	update")

								execute_process(COMMAND	${GIT_EXECUTABLE}	submodule	update	--init	--recursive

																								WORKING_DIRECTORY	${CMAKE_CURRENT_SOURCE_DIR}

																								RESULT_VARIABLE	GIT_SUBMOD_RESULT)

								if(NOT	GIT_SUBMOD_RESULT	EQUAL	"0")

												message(FATAL_ERROR	"git	submodule	update	--init	--recursive	failed	with	${GIT_SUBMOD_RESULT},	plea

se	checkout	submodules")

								endif()

				endif()

endif()

if(NOT	EXISTS	"${PROJECT_SOURCE_DIR}/extern/repo/CMakeLists.txt")

				message(FATAL_ERROR	"The	submodules	were	not	downloaded!	GIT_SUBMODULE	was	turned	off	or	failed.	Please	upd

ate	submodules	and	try	again.")

endif()

The	first	line	checks	for	Git	using	CMake's	built	in	 	FindGit.cmake	.	Then,	if	you	are	in	a	git	checkout	of	your	source,	add	an
option	(defaulting	to	 	ON)	that	allows	developers	to	turn	off	the	feature	if	they	need	to.	We	then	run	the	command	to	get	all
repositories,	and	fail	if	that	command	fails,	with	a	nice	error	message.	Finally,	we	verify	that	the	repositories	exist	before
continuing,	regardless	of	the	method	used	to	obtain	them.	You	can	use	 	OR		to	list	several.

Now,	your	users	can	be	completely	oblivious	to	the	existence	of	the	submodules,	and	you	can	still	keep	up	good	development
practices!	The	only	thing	to	watch	out	for	is	for	developers;	you	will	reset	the	submodule	when	you	rerun	CMake	if	you	are
developing	inside	the	submodule.	Just	add	new	commits	to	the	parent	staging	area,	and	you'll	be	fine.

You	can	then	include	projects	that	provide	good	CMake	support:

add_subdirectory(extern/repo)

Or,	you	can	build	an	interface	library	target	yourself	if	it	is	a	header	only	project.	Or,	you	can	use	 	find_package		if	that	is
supported,	probably	preparing	the	initial	search	directory	to	be	the	one	you've	added	(check	the	docs	or	the	file	for	the
	Find*.cmake		file	you	are	using).	You	can	also	include	a	CMake	helper	file	directory	if	you	append	to	your	 	CMAKE_MODULE_PATH	,
for	example	to	add	 	pybind11	's	improved	 	FindPython*.cmake		files.

Bonus:	Git	version	number

gitbook	$	git	submodule	add	../../owner/repo.git	extern/repo

Submodule

52

Move	this	to	Git	section:

execute_process(COMMAND	${GIT_EXECUTABLE}	rev-parse	--short	HEAD

																WORKING_DIRECTORY	"${CMAKE_CURRENT_SOURCE_DIR}"

																OUTPUT_VARIABLE	PACKAGE_GIT_VERSION

																ERROR_QUIET

																OUTPUT_STRIP_TRAILING_WHITESPACE)

Submodule

53

Downloading	Projects

Downloading	Method:	build	time

Until	CMake	3.11,	the	primary	download	method	for	packages	was	done	at	build	time.	This	causes	several	issues;	most	important
of	which	is	that	 	add_subdirectory		doesn't	work	on	a	file	that	doesn't	exist	yet!	The	built-in	tool	for	this,	ExternalProject,	has	to
work	around	this	by	doing	the	build	itself.	(It	can,	however,	build	non-CMake	packages	as	well).

.	Note	that	ExternalData	is	the	tool	for	non-package	data.	↩

Downloading	Method:	configure	time
If	you	prefer	configure	time,	see	the	Crascit/DownloadProject	repository	for	a	drop-in	solution.	Submodules	work	so	well,	though,
that	I've	discontinued	most	of	the	downloads	for	things	like	GoogleTest	and	moved	them	to	submodules.	Auto	downloads	are
harder	to	mimic	if	you	don't	have	internet	access,	and	they	are	often	implemented	in	the	build	directory,	wasting	time	and	space	if
you	have	multiple	build	directories.

1

1

DownloadProject

54

https://github.com/Crascit/DownloadProject

FetchContent	(CMake	3.11+)
Often,	you	would	like	to	do	your	download	of	data	or	packages	as	part	of	the	configure	instead	of	the	build.	This	was	invented
several	times	in	third	party	modules,	but	was	finally	added	to	CMake	itself	as	part	of	CMake	3.11	as	the	FetchContent	module.

The	FetchContent	module	has	excellent	documentation	that	I	won't	try	to	repeat.	The	key	ideas	are:

Use	 	FetchContent_Declare(MyName)		to	get	data	or	a	package.	You	can	set	URLs,	Git	repositories,	and	more.
Use	 	FetchContent_GetProperties(MyName)		on	the	name	you	picked	in	the	first	step	to	get	 	MyName_*		variables.
Check	 	MyName_POPULATED	,	and	if	not	populated,	use	 	FetchContent_Populate(MyName)		(and	if	a	package,
	add_subdirectory("${MyName_SOURCE_DIR}"	"${MyName_BINARY_DIR}"))

For	example,	to	download	Catch2:

FetchContent_Declare(

		catch

		GIT_REPOSITORY	https://github.com/catchorg/Catch2.git

		GIT_TAG								v2.13.6

)

#	CMake	3.14+

FetchContent_MakeAvailable(catch)

If	you	can't	use	CMake	3.14+,	the	classic	way	to	prepare	code	was:

#	CMake	3.11+

FetchContent_GetProperties(catch)

if(NOT	catch_POPULATED)

		FetchContent_Populate(catch)

		add_subdirectory(${catch_SOURCE_DIR}	${catch_BINARY_DIR})

endif()

Of	course,	you	could	bundled	this	up	into	a	macro:

if(${CMAKE_VERSION}	VERSION_LESS	3.14)

				macro(FetchContent_MakeAvailable	NAME)

								FetchContent_GetProperties(${NAME})

								if(NOT	${NAME}_POPULATED)

												FetchContent_Populate(${NAME})

												add_subdirectory(${${NAME}_SOURCE_DIR}	${${NAME}_BINARY_DIR})

								endif()

				endmacro()

endif()

Now	you	have	the	CMake	3.14+	syntax	in	CMake	3.11+.

See	the	example	here.

Fetch	(CMake	3.11)

55

https://cmake.org/cmake/help/latest/module/FetchContent.html
https://cmake.org/cmake/help/latest/module/FetchContent.html
https://gitlab.com/CLIUtils/modern-cmake/-/tree/master/examples/fetch

Testing

General	Testing	Information

In	your	main	CMakeLists.txt	you	need	to	add	the	following	function	call	(not	in	a	subfolder):

if(CMAKE_PROJECT_NAME	STREQUAL	PROJECT_NAME)

				include(CTest)

endif()

Which	will	enable	testing	and	set	a	 	BUILD_TESTING		option	so	users	can	turn	testing	on	and	off	(along	with	a	few	other	things).	Or
you	can	do	this	yourself	by	directly	calling	 	enable_testing()	.

When	you	add	your	test	folder,	you	should	do	something	like	this:

if(CMAKE_PROJECT_NAME	STREQUAL	PROJECT_NAME	AND	BUILD_TESTING)

				add_subdirectory(tests)

endif()

The	reason	for	this	is	that	if	someone	else	includes	your	package,	and	they	use	 	BUILD_TESTING	,	they	probably	do	not	want	your
tests	to	build.	In	the	rare	case	that	you	really	do	want	to	enable	testing	on	both	packages,	you	can	provide	an	override:

if((CMAKE_PROJECT_NAME	STREQUAL	PROJECT_NAME	OR	MYPROJECT_BUILD_TESTING)	AND	BUILD_TESTING)

				add_subdirectory(tests)

endif()

The	main	use	case	for	the	override	above	is	actually	in	this	book's	own	examples,	as	the	master	CMake	project	really	does	want	to
run	all	the	subproject	tests.

You	can	register	targets	with:

add_test(NAME	TestName	COMMAND	TargetName)

If	you	put	something	else	besides	a	target	name	after	COMMAND,	it	will	register	as	a	command	line	to	run.	It	would	also	be	valid
to	put	the	generator	expression:

add_test(NAME	TestName	COMMAND	$<TARGET_FILE:${TESTNAME}>)

which	would	use	the	output	location	(thus,	the	executable)	of	the	produced	target.

Building	as	part	of	a	test

If	you	want	to	run	CMake	to	build	a	project	as	part	of	a	test,	you	can	do	that	too	(in	fact,	this	is	how	CMake	tests	itself).	For
example,	if	your	master	project	was	called	 	MyProject		and	you	had	an	 	examples/simple		project	that	could	build	by	itself,	this
would	look	like:

add_test(

		NAME

				ExampleCMakeBuild

		COMMAND

				"${CMAKE_CTEST_COMMAND}"

Testing

56

https://gitlab.kitware.com/cmake/cmake/blob/master/Modules/CTest.cmake

													--build-and-test	"${My_SOURCE_DIR}/examples/simple"

																														"${CMAKE_CURRENT_BINARY_DIR}/simple"

													--build-generator	"${CMAKE_GENERATOR}"

													--test-command	"${CMAKE_CTEST_COMMAND}"

)

Testing	Frameworks
Look	at	the	subchapters	for	recipes	for	popular	frameworks.

GoogleTest:	A	popular	option	from	Google.	Development	can	be	a	bit	slow.
Catch2:	A	modern,	PyTest-like	framework	with	clever	macros.
DocTest:	A	replacement	for	Catch2	that	is	supposed	to	compile	much	faster	and	be	cleaner.	See	Catch2	chapter	and	replace
with	DocTest.

Testing

57

https://github.com/onqtam/doctest

GoogleTest
GoogleTest	and	GoogleMock	are	classic	options;	personally,	I	personally	would	recommend	Catch2	instead,	as	GoogleTest
heavily	follows	the	Google	development	philosophy;	it	drops	old	compilers	very	quickly,	it	assumes	users	want	to	live	at	HEAD,
etc.	Adding	GoogleMock	is	also	often	painful	-	and	you	need	GoogleMock	to	get	matchers,	which	are	a	default	feature	in	Catch2
(but	not	doctest).

Submodule	method	(preferred)

To	use	this	method,	just	checkout	GoogleTest	as	a	submodule:

git	submodule	add	--branch=release-1.8.0	../../google/googletest.git	extern/googletest

Then,	in	your	main	 	CMakeLists.txt	:

option(PACKAGE_TESTS	"Build	the	tests"	ON)

if(PACKAGE_TESTS)

				enable_testing()

				include(GoogleTest)

				add_subdirectory(tests)

endif()

I	would	recommend	using	something	like	 	PROJECT_NAME	STREQUAL	CMAKE_PROJECT_NAME		to	set	the	default	for	the
	PACKAGE_TESTS		option,	since	this	should	only	build	by	default	if	this	is	the	current	project.	As	mentioned	before,	you	have	to	do
the	 	enable_testing		in	your	main	CMakeLists.

Now,	in	your	tests	directory:

add_subdirectory("${PROJECT_SOURCE_DIR}/extern/googletest"	"extern/googletest")

If	you	did	this	in	your	main	CMakeLists,	you	could	use	a	normal	 	add_subdirectory	;	the	extra	path	here	is	needed	to	correct	the
build	path	because	we	are	calling	it	from	a	subdirectory.

The	next	line	is	optional,	but	keeps	your	 	CACHE		cleaner:

mark_as_advanced(

				BUILD_GMOCK	BUILD_GTEST	BUILD_SHARED_LIBS

				gmock_build_tests	gtest_build_samples	gtest_build_tests

				gtest_disable_pthreads	gtest_force_shared_crt	gtest_hide_internal_symbols

)

If	you	are	interested	in	keeping	IDEs	that	support	folders	clean,	I	would	also	add	these	lines:

set_target_properties(gtest	PROPERTIES	FOLDER	extern)

set_target_properties(gtest_main	PROPERTIES	FOLDER	extern)

set_target_properties(gmock	PROPERTIES	FOLDER	extern)

set_target_properties(gmock_main	PROPERTIES	FOLDER	extern)

Then,	to	add	a	test,	I'd	recommend	the	following	macro:

macro(package_add_test	TESTNAME)

				#	create	an	executable	in	which	the	tests	will	be	stored

1

GoogleTest

58

				add_executable(${TESTNAME}	${ARGN})

				#	link	the	Google	test	infrastructure,	mocking	library,	and	a	default	main	function	to

				#	the	test	executable.		Remove	g_test_main	if	writing	your	own	main	function.

				target_link_libraries(${TESTNAME}	gtest	gmock	gtest_main)

				#	gtest_discover_tests	replaces	gtest_add_tests,

				#	see	https://cmake.org/cmake/help/v3.10/module/GoogleTest.html	for	more	options	to	pass	to	it

				gtest_discover_tests(${TESTNAME}

								#	set	a	working	directory	so	your	project	root	so	that	you	can	find	test	data	via	paths	relative	to	the

	project	root

								WORKING_DIRECTORY	${PROJECT_SOURCE_DIR}

								PROPERTIES	VS_DEBUGGER_WORKING_DIRECTORY	"${PROJECT_SOURCE_DIR}"

)

				set_target_properties(${TESTNAME}	PROPERTIES	FOLDER	tests)

endmacro()

package_add_test(test1	test1.cpp)

This	will	allow	you	to	quickly	and	simply	add	tests.	Feel	free	to	adjust	to	suit	your	needs.	If	you	haven't	seen	it	before,	 	ARGN		is
"every	argument	after	the	listed	ones".	Modify	the	macro	to	meet	your	needs.	For	example,	if	you're	testing	libraries	and	need	to
link	in	different	libraries	for	different	tests,	you	might	use	this:

macro(package_add_test_with_libraries	TESTNAME	FILES	LIBRARIES	TEST_WORKING_DIRECTORY)

				add_executable(${TESTNAME}	${FILES})

				target_link_libraries(${TESTNAME}	gtest	gmock	gtest_main	${LIBRARIES})

				gtest_discover_tests(${TESTNAME}

								WORKING_DIRECTORY	${TEST_WORKING_DIRECTORY}

								PROPERTIES	VS_DEBUGGER_WORKING_DIRECTORY	"${TEST_WORKING_DIRECTORY}"

)

				set_target_properties(${TESTNAME}	PROPERTIES	FOLDER	tests)

endmacro()

package_add_test_with_libraries(test1	test1.cpp	lib_to_test	"${PROJECT_DIR}/european-test-data/")

Download	method

You	can	use	the	downloader	in	my	CMake	helper	repository,	using	CMake's	 	include		command.

This	is	a	downloader	for	GoogleTest,	based	on	the	excellent	DownloadProject	tool.	Downloading	a	copy	for	each	project	is	the
recommended	way	to	use	GoogleTest	(so	much	so,	in	fact,	that	they	have	disabled	the	automatic	CMake	install	target),	so	this
respects	that	design	decision.	This	method	downloads	the	project	at	configure	time,	so	that	IDEs	correctly	find	the	libraries.	Using
it	is	simple:

cmake_minimum_required(VERSION	3.10)

project(MyProject	CXX)

list(APPEND	CMAKE_MODULE_PATH	${PROJECT_SOURCE_DIR}/cmake)

enable_testing()	#	Must	be	in	main	file

include(AddGoogleTest)	#	Could	be	in	/tests/CMakeLists.txt

add_executable(SimpleTest	SimpleTest.cu)

add_gtest(SimpleTest)

Note:	 	add_gtest		is	just	a	macro	that	adds	 	gtest	,	 	gmock	,	and	 	gtest_main	,	and	then	runs	 	add_test		to	create	a	test
with	the	same	name:

target_link_libraries(SimpleTest	gtest	gmock	gtest_main)

add_test(SimpleTest	SimpleTest)

GoogleTest

59

https://github.com/CLIUtils/cmake
https://github.com/google/googletest
https://github.com/Crascit/DownloadProject

FetchContent:	CMake	3.11

The	example	for	the	FetchContent	module	is	GoogleTest:

include(FetchContent)

FetchContent_Declare(

		googletest

		GIT_REPOSITORY	https://github.com/google/googletest.git

		GIT_TAG								release-1.8.0

)

FetchContent_GetProperties(googletest)

if(NOT	googletest_POPULATED)

		FetchContent_Populate(googletest)

		add_subdirectory(${googletest_SOURCE_DIR}	${googletest_BINARY_DIR})

endif()

.	Here	I've	assumed	that	you	are	working	on	a	GitHub	repository	by	using	the	relative	path	to	googletest.	↩1

GoogleTest

60

Catch
Catch2	(C++11	only	version)	is	a	powerful,	idomatic	testing	solutions	similar	in	philosophy	to	PyTest	for	Python.	It	supports	a
wider	range	of	compilers	than	GTest,	and	is	quick	to	support	new	things,	like	M1	builds	on	macOS.	It	also	has	a	smaller	but	faster
twin,	doctest,	which	is	quick	to	compile	but	misses	features	like	matchers.	To	use	Catch	in	a	CMake	project,	there	are	several
options.

Configure	methods

Catch	has	nice	CMake	support,	though	to	use	it,	you	need	the	full	repo.	This	could	be	with	submodules	or	FetchContent.	Both	the
	extended-project		and	 	fetch		examples	use	FetchContent.	See	the	docs.

Quick	download

This	is	likely	the	simplest	method	and	supports	older	versions	of	CMake.	You	can	download	the	all-in-one	header	file	in	one	step:

add_library(catch_main	main.cpp)

target_include_directories(catch_main	PUBLIC	"${CMAKE_CURRENT_SOURCE_DIR}")

set(url	https://github.com/philsquared/Catch/releases/download/v2.13.6/catch.hpp)

file(

		DOWNLOAD	${url}	"${CMAKE_CURRENT_BINARY_DIR}/catch.hpp"

		STATUS	status

		EXPECTED_HASH	SHA256=681e7505a50887c9085539e5135794fc8f66d8e5de28eadf13a30978627b0f47)

list(GET	status	0	error)

if(error)

		message(FATAL_ERROR	"Could	not	download	${url}")

endif()

target_include_directories(catch_main	PUBLIC	"${CMAKE_CURRENT_BINARY_DIR}")

This	will	two	downloads	when	Catch	3	is	released,	as	that	now	requires	two	files	(but	you	no	longer	have	to	write	a	main.cpp).
The	 	main.cpp		looks	like	this:

#define	CATCH_CONFIG_MAIN

#include	"catch.hpp"

Vendoring
If	you	simply	drop	in	the	single	include	release	of	Catch	into	your	project,	this	is	what	you	would	need	to	add	Catch:

#	Prepare	"Catch"	library	for	other	executables

set(CATCH_INCLUDE_DIR	${CMAKE_CURRENT_SOURCE_DIR}/extern/catch)

add_library(Catch2::Catch	IMPORTED	INTERFACE)

set_property(Catch2::Catch	PROPERTY	INTERFACE_INCLUDE_DIRECTORIES	"${CATCH_INCLUDE_DIR}")

Then,	you	would	link	to	Catch2::Catch.	This	would	have	been	okay	as	an	INTERFACE	target	since	you	won't	be	exporting	your
tests.

Direct	inclusion

Catch

61

https://github.com/catchorg/Catch2
https://github.com/onqtam/doctest
https://gitlab.com/CLIUtils/modern-cmake/-/tree/master/examples/extended-project
https://gitlab.com/CLIUtils/modern-cmake/-/tree/master/examples/fetch
https://github.com/catchorg/Catch2/blob/v2.x/docs/cmake-integration.md#top

If	you	add	the	library	using	ExternalProject,	FetchContent,	or	git	submodules,	you	can	also	 	add_subdirectory		Catch	(CMake
3.1+).

Catch	also	provides	two	CMake	modules	that	you	can	use	to	register	the	individual	tests	with	CMake.

Catch

62

Exporting	and	Installing
There	are	three	good	ways	and	one	bad	way	to	allow	others	use	your	library:

Find	module	(the	bad	way)

If	you	are	the	library	author,	don't	make	a	 	Find<mypackage>.cmake		script!	These	were	designed	for	libraries	whose	authors	did
not	support	CMake.	Use	a	 	Config<mypackage>.cmake		instead	as	listed	below.

Add	Subproject

A	package	can	include	your	project	in	a	subdirectory,	and	then	use	 	add_subdirectory		on	the	subdirectory.	This	useful	for
header-only	and	quick-to-compile	libraries.	Note	that	the	install	commands	may	interfere	with	the	parent	project,	so	you	can	add
	EXCLUDE_FROM_ALL		to	the	 	add_subdirectory		command;	the	targets	you	explicitly	use	will	still	be	built.

In	order	to	support	this	as	a	library	author,	make	sure	you	use	 	CMAKE_CURRENT_SOURCE_DIR		instead	of	 	PROJECT_SOURCE_DIR		(and
likewise	for	other	variables,	like	binary	dirs).	You	can	check	 	CMAKE_PROJECT_NAME	STREQUAL	PROJECT_NAME		to	only	add	options
or	defaults	that	make	sense	if	this	is	a	project.

Also,	since	namespaces	are	a	good	idea,	and	the	usage	of	your	library	should	be	consistent	with	the	other	methods	below,	you
should	add

add_library(MyLib::MyLib	ALIAS	MyLib)

to	standardise	the	usage	across	all	methods.	This	ALIAS	target	will	not	be	exported	below.

Exporting
The	third	way	is	 	*Config.cmake		scripts;	that	will	be	the	topic	of	the	next	chapter	in	this	session.

Exporting	and	Installing

63

Installing
Install	commands	cause	a	file	or	target	to	be	"installed"	into	the	install	tree	when	you	 	make	install	.	Your	basic	target	install
command	looks	like	this:

install(TARGETS	MyLib

								EXPORT	MyLibTargets

								LIBRARY	DESTINATION	lib

								ARCHIVE	DESTINATION	lib

								RUNTIME	DESTINATION	bin

								INCLUDES	DESTINATION	include

)

The	various	destinations	are	only	needed	if	you	have	a	library,	static	library,	or	program	to	install.	The	includes	destination	is
special;	since	a	target	does	not	install	includes.	It	only	sets	the	includes	destination	on	the	exported	target	(which	is	often	already
set	by	 	target_include_directories	,	so	check	the	MyLibTargets	file	and	make	sure	you	don't	have	the	include	directory
included	twice	if	you	want	clean	cmake	files).

It's	usually	a	good	idea	to	give	CMake	access	to	the	version,	so	that	 	find_package		can	have	a	version	specified.	That	looks	like
this:

include(CMakePackageConfigHelpers)

write_basic_package_version_file(

				MyLibConfigVersion.cmake

				VERSION	${PACKAGE_VERSION}

				COMPATIBILITY	AnyNewerVersion

)

You	have	two	choices	next.	You	need	to	make	a	 	MyLibConfig.cmake	,	but	you	can	do	it	either	by	exporting	your	targets	directly
to	it,	or	by	writing	it	by	hand,	then	including	the	targets	file.	The	later	option	is	what	you'll	need	if	you	have	any	dependencies,
even	just	OpenMP,	so	I'll	illustrate	that	method.

First,	make	an	install	targets	file	(very	similar	to	the	one	you	made	in	the	build	directory):

install(EXPORT	MyLibTargets

								FILE	MyLibTargets.cmake

								NAMESPACE	MyLib::

								DESTINATION	lib/cmake/MyLib

)

This	file	will	take	the	targets	you	exported	and	put	them	in	a	file.	If	you	have	no	dependencies,	just	use	 	MyLibConfig.cmake	
instead	of	 	MyLibTargets.cmake		here.	Then	write	a	custom	 	MyLibConfig.cmake		file	in	your	source	tree	somewhere.	If	you	want
to	capture	configure	time	variables,	you	can	use	a	 	.in		file,	and	you	will	want	to	use	the	 	@var@		syntax.	The	contents	that	look
like	this:

include(CMakeFindDependencyMacro)

#	Capturing	values	from	configure	(optional)

set(my-config-var	@my-config-var@)

#	Same	syntax	as	find_package

find_dependency(MYDEP	REQUIRED)

#	Any	extra	setup

#	Add	the	targets	file

Installing

64

include("${CMAKE_CURRENT_LIST_DIR}/MyLibTargets.cmake")

Now,	you	can	use	configure	file	(if	you	used	a	 	.in		file)	and	then	install	the	resulting	file.	Since	we've	made	a	 	ConfigVersion	
file,	this	is	a	good	place	to	install	it	too.

configure_file(MyLibConfig.cmake.in	MyLibConfig.cmake	@ONLY)

install(FILES	"${CMAKE_CURRENT_BINARY_DIR}/MyLibConfig.cmake"

														"${CMAKE_CURRENT_BINARY_DIR}/MyLibConfigVersion.cmake"

								DESTINATION	lib/cmake/MyLib

)

That's	it!	Now	once	you	install	a	package,	there	will	be	files	in	 	lib/cmake/MyLib		that	CMake	will	search	for	(specifically,
	MyLibConfig.cmake		and	 	MyLibConfigVersion.cmake),	and	the	targets	file	that	config	uses	should	be	there	as	well.

When	CMake	searches	for	a	package,	it	will	look	in	the	current	install	prefix	and	several	standard	places.	You	can	also	add	this	to
your	search	path	manually,	including	 	MyLib_PATH	,	and	CMake	gives	the	user	nice	help	output	if	the	configure	file	is	not	found.

The	CMakePackageConfigHelpers	module	mentioned	above	has	additional	tools	to	help	write	a	more	relocatable	 	Config.cmake	
file.	Refer	to	the	CMake	documentation	on	configure_package_config_file	(used	instead	of	 	configure_file)	and	the
	@PACKAGE_INIT@		substitution	string	to	get

a	set	of	automatically	defined	 	PACKAGE_<var>		variables	(for	relative	path	versions	of	 	<var>)	and
a	 	set_and_check()		alternative	to	 	set()		to	automatically	check	for	path	existence.

Installing

65

https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html
https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html#command:configure_package_config_file

Exporting

The	default	behavior	for	exporting	changed	in	CMake	3.15.	Since	changing	files	in	a	user's	home	directory	is	considered
"surprising"	(and	it	is,	which	is	why	this	chapter	exists),	it	is	no	longer	the	default	behavior.	If	you	set	a	minimum	or
maximum	CMake	version	of	3.15	or	later,	this	will	no	longer	happen	unless	you	set	 	CMAKE_EXPORT_PACKAGE_REGISTRY		as
shown	below.

There	are	three	ways	to	access	a	project	from	another	project:	subdirectory,	exported	build	directories,	and	installing.	To	use	the
build	directory	of	one	project	in	another	project,	you	will	need	to	export	targets.	Exporting	targets	is	needed	for	a	proper	install;
allowing	the	build	directory	to	be	used	is	just	two	added	lines.	It	is	not	generally	a	way	to	work	that	I	would	recommend,	but	can
be	useful	for	development	and	as	way	to	prepare	the	installation	procedure	discussed	later.

You	should	make	an	export	set,	probably	near	the	end	of	your	main	 	CMakeLists.txt	:

export(TARGETS	MyLib1	MyLib2	NAMESPACE	MyLib::	FILE	MyLibTargets.cmake)

This	puts	the	targets	you	have	listed	into	a	file	in	the	build	directory,	and	optionally	prefixes	them	with	a	namespace.	Now,	to
allow	CMake	to	find	this	package,	export	the	package	into	the	 	$HOME/.cmake/packages		folder:

set(CMAKE_EXPORT_PACKAGE_REGISTRY	ON)

export(PACKAGE	MyLib)

Now,	if	you	 	find_package(MyLib)	,	CMake	can	find	the	build	folder.	Look	at	the	generated	 	MyLibTargets.cmake		file	to	help
you	understand	exactly	what	is	created;	it's	just	a	normal	CMake	file,	with	the	exported	targets.

Note	that	there's	a	downside:	if	you	have	imported	dependencies,	they	will	need	to	be	imported	before	you	 	find_package	.	That
will	be	fixed	in	the	next	method.

Exporting

66

Packaging
There	are	two	ways	to	instruct	CMake	to	build	your	package;	one	is	to	use	a	CPackConfig.cmake	file,	and	the	other	is	to	integrate
the	CPack	variables	into	your	CMakeLists.txt	file.	Since	you	want	variables	from	your	main	build	to	be	included,	like	version
number,	you'll	want	to	make	a	configure	file	if	you	go	that	route.	I'll	show	you	the	integrated	version:

#	Packaging	support

set(CPACK_PACKAGE_VENDOR	"Vendor	name")

set(CPACK_PACKAGE_DESCRIPTION_SUMMARY	"Some	summary")

set(CPACK_PACKAGE_VERSION_MAJOR	${PROJECT_VERSION_MAJOR})

set(CPACK_PACKAGE_VERSION_MINOR	${PROJECT_VERSION_MINOR})

set(CPACK_PACKAGE_VERSION_PATCH	${PROJECT_VERSION_PATCH})

set(CPACK_RESOURCE_FILE_LICENSE	"${CMAKE_CURRENT_SOURCE_DIR}/LICENSE")

set(CPACK_RESOURCE_FILE_README	"${CMAKE_CURRENT_SOURCE_DIR}/README.md")

These	are	the	most	common	variables	you'll	need	to	make	a	binary	package.	A	binary	package	uses	the	install	mechanism	of
CMake,	so	anything	that	is	installed	will	be	present.

You	can	also	make	a	source	package.	You	should	set	 	CPACK_SOURCE_IGNORE_FILES		to	regular	expressions	that	ensure	you	don't
pick	up	any	extra	files	(like	the	build	directory	or	git	details);	otherwise	 	make	package_source		will	bundle	up	literally	everything
in	the	source	directory.	You	can	also	set	the	source	generator	to	make	your	favorite	types	of	files	for	source	packages:

set(CPACK_SOURCE_GENERATOR	"TGZ;ZIP")

set(CPACK_SOURCE_IGNORE_FILES

				/.git

				/dist

				/.*build.*

				/\\\\.DS_Store

)

Note	that	this	will	not	work	on	Windows,	but	the	generated	source	packages	work	on	Windows.

Finally,	you	need	to	include	the	CPack	module:

include(CPack)

Packaging

67

Finding	Packages
There	are	two	ways	to	find	packages	in	CMake:	"Module"	mode	and	"Config"	mode.

Looking	for	Libraries	(Packages)

68

CUDA
CUDA	support	is	available	in	two	flavors.	The	new	method,	introduced	in	CMake	3.8	(3.9	for	Windows),	should	be	strongly
preferred	over	the	old,	hacky	method	-	I	only	mention	the	old	method	due	to	the	high	chances	of	an	old	package	somewhere
having	it.	Unlike	the	older	languages,	CUDA	support	has	been	rapidly	evolving,	and	building	CUDA	is	hard,	so	I	would
recommend	you	require	a	very	recent	version	of	CMake!	CMake	3.17	and	3.18	have	a	lot	of	improvements	directly	targeting
CUDA.

A	good	resource	for	CUDA	and	Modern	CMake	is	this	talk	by	CMake	developer	Robert	Maynard	at	GTC	2017.

Adding	the	CUDA	Language

There	are	two	ways	to	enable	CUDA	support.	If	CUDA	is	not	optional:

project(MY_PROJECT	LANGUAGES	CUDA	CXX)

You'll	probably	want	 	CXX		listed	here	also.	And,	if	CUDA	is	optional,	you'll	want	to	put	this	in	somewhere	conditionally:

enable_language(CUDA)

To	check	to	see	if	CUDA	is	available,	use	CheckLanuage:

include(CheckLanguage)

check_language(CUDA)

You	can	see	if	CUDA	is	present	by	checking	 	CMAKE_CUDA_COMPILER		(was	missing	until	CMake	3.11).

You	can	check	variables	like	 	CMAKE_CUDA_COMPILER_ID		(for	nvcc,	this	is	 	"NVIDIA"	,	Clang	was	added	in	CMake	3.18).	You	can
check	the	version	with	 	CMAKE_CUDA_COMPILER_VERSION	.

Variables	for	CUDA
Many	variables	with	 	CXX		in	the	name	have	a	CUDA	version	with	 	CUDA		instead.	For	example,	to	set	the	C++	standard	required
for	CUDA,

if(NOT	DEFINED	CMAKE_CUDA_STANDARD)

				set(CMAKE_CUDA_STANDARD	11)

				set(CMAKE_CUDA_STANDARD_REQUIRED	ON)

endif()

If	you	are	looking	for	CUDA's	standard	level,	in	CMake	3.17	a	new	collection	of	compiler	features	were	added,	like
	cuda_std_11	.	These	have	the	same	benefits	that	you	are	already	used	to	from	the	 	cxx		versions.

Adding	a	library	/	executable

This	is	the	easy	part;	as	long	as	you	use	 	.cu		for	CUDA	files,	you	can	just	add	libraries	exactly	like	you	normally	would.

You	can	also	use	separable	compilation:

set_target_properties(mylib	PROPERTIES

CUDA

69

http://on-demand.gputechconf.com/gtc/2017/presentation/S7438-robert-maynard-build-systems-combining-cuda-and-machine-learning.pdf

																												CUDA_SEPARABLE_COMPILATION	ON)

You	can	also	directly	make	a	PTX	file	with	the	 	CUDA_PTX_COMPILATION		property.

Targeting	architectures

When	you	build	CUDA	code,	you	generally	should	be	targeting	an	architecture.	If	you	don't,	you	compile	PTX	for	the	lowest
supported	architecture,	which	provide	the	basic	instructions	but	is	compiled	at	runtime,	making	it	potentially	much	slower	to	load.

All	cards	have	an	architecture	level,	like	"7.2".	You	have	two	choices;	the	first	is	the	code	level;	this	will	report	to	the	code	being
compiled	a	version,	like	"5.0",	and	it	will	take	advantage	of	all	the	features	up	to	5.0	but	not	past	(assuming	well	written	code	/
standard	libraries).	Then	there's	a	target	architecture,	which	must	be	equal	or	greater	to	the	code	architecture.	This	needs	to	have
the	same	major	number	as	your	target	card,	and	be	equal	to	or	less	than	the	target	card.	So	7.0	would	be	a	common	choice	for	our
7.2	card.	Finally,	you	can	also	generate	PTX;	this	will	work	on	all	future	cards,	but	will	compile	just	in	time.

In	CMake	3.18,	it	became	very	easy	to	target	architectures.	If	you	have	a	version	range	that	includes	3.18	or	newer,	you	will	be
using	 	CMAKE_CUDA_ARCHITECTURES		variable	and	the	 	CUDA_ARCHITECTURES		property	on	targets.	You	can	list	values	(without	the
	.),	like	50	for	arch	5.0.	This	will	generate	for	both	the	real	(SASS)	and	virtual	architecture	(PTX).	Passing	values	of	'50-real'
will	only	generate	for	SASS,	while	passing	'50-virtual'	will	only	generate	for	PTX.	If	set	to	OFF,	it	will	not	pass	architectures.

In	CMake	3.24,	the	architectures	values	have	been	extended	to	support	user	friendly	values	of	'native',	'all',	and	'all-major'.

Working	with	targets

Using	targets	should	work	similarly	to	CXX,	but	there's	a	problem.	If	you	include	a	target	that	includes	compiler	options	(flags),
most	of	the	time,	the	options	will	not	be	protected	by	the	correct	includes	(and	the	chances	of	them	having	the	correct	CUDA
wrapper	is	even	smaller).	Here's	what	a	correct	compiler	options	line	should	look	like:

"$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:CXX>>:-fopenmp>$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:CUDA>>:-Xcompiler

=-fopenmp>"

However,	if	you	using	almost	any	find_package,	and	using	the	Modern	CMake	methods	of	targets	and	inheritance,	everything	will
break.	I've	learned	that	the	hard	way.

For	now,	here's	a	pretty	reasonable	solution,	as	long	as	you	know	the	un-aliased	target	name.	It's	a	function	that	will	fix	a	C++
only	target	by	wrapping	the	flags	if	using	a	CUDA	compiler:

function(CUDA_CONVERT_FLAGS	EXISTING_TARGET)

				get_property(old_flags	TARGET	${EXISTING_TARGET}	PROPERTY	INTERFACE_COMPILE_OPTIONS)

				if(NOT	"${old_flags}"	STREQUAL	"")

								string(REPLACE	";"	","	CUDA_flags	"${old_flags}")

								set_property(TARGET	${EXISTING_TARGET}	PROPERTY	INTERFACE_COMPILE_OPTIONS

												"$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:CXX>>:${old_flags}>$<$<BUILD_INTERFACE:$<COMPILE_LANGUAGE:C

UDA>>:-Xcompiler=${CUDA_flags}>"

)

				endif()

endfunction()

Useful	variables

You	can	use	 	FindCUDAToolkit		to	find	a	variety	of	useful	targets	and	variables	even	without	enabling	the	CUDA	language.

cmake_minimum_required(VERSION	3.17)

project(example	LANGUAGES	CXX)

find_package(CUDAToolkit	REQUIRED)

add_executable(uses_cublas	source.cpp)

CUDA

70

https://cmake.org/cmake/help/git-stage/module/FindCUDAToolkit.html

target_link_libraries(uses_cublas	PRIVATE	CUDA::cublas)

Variables	that	using	 	find_package(CUDAToolkit)		provides:

	CUDAToolkit_BIN_DIR	:	Directory	that	holds	the	 	nvcc		executable
	CUDAToolkit_INCLUDE_DIRS	:	Lists	of	directories	containing	headers	for	built-in	Thrust,	etc
	CUDAToolkit_LIBRARY_DIR	:	Directory	that	holds	the	CUDA	runtime	library

Variables	that	enabling	the	 	CUDA		language	provides:

	CMAKE_CUDA_COMPILER	:	NVCC	with	location
	CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES	:	Place	for	built-in	Thrust,	etc

Note	that	FindCUDA	is	deprecated,	but	for	for	versions	of	CMake	<	3.18,	the
following	functions	required	FindCUDA:

CUDA	version	checks	/	picking	a	version
Architecture	detection	(Note:	3.12	fixes	this	partially)
Linking	to	CUDA	libraries	from	non-.cu	files

Classic	FindCUDA	[WARNING:	DO	NOT	USE]	(for	reference
only)
If	you	want	to	support	an	older	version	of	CMake,	I	recommend	at	least	including	the	FindCUDA	from	CMake	version	3.9	in
your	cmake	folder	(see	the	CLIUtils	github	organization	for	a	git	repository).	You'll	want	two	features	that	were	added:
	CUDA_LINK_LIBRARIES_KEYWORD		and	 	cuda_select_nvcc_arch_flags	,	along	with	the	newer	architectures	and	CUDA	versions.

To	use	the	old	CUDA	support,	you	use	 	find_package	:

find_package(CUDA	7.0	REQUIRED)

message(STATUS	"Found	CUDA	${CUDA_VERSION_STRING}	at	${CUDA_TOOLKIT_ROOT_DIR}")

You	can	control	the	CUDA	flags	with	 	CUDA_NVCC_FLAGS		(list	append)	and	you	can	control	separable	compilation	with
	CUDA_SEPARABLE_COMPILATION	.	You'll	also	want	to	make	sure	CUDA	plays	nice	and	adds	keywords	to	the	targets	(CMake	3.9+):

set(CUDA_LINK_LIBRARIES_KEYWORD	PUBLIC)

You'll	also	might	want	to	allow	a	user	to	check	for	the	arch	flags	of	their	current	hardware:

cuda_select_nvcc_arch_flags(ARCH_FLAGS)	#	optional	argument	for	arch	to	add

CUDA

71

https://github.com/CLIUtils/cuda_support

OpenMP
OpenMP	support	was	drastically	improved	in	CMake	3.9+.	The	Modern(TM)	way	to	add	OpenMP	to	a	target	is:

find_package(OpenMP)

if(OpenMP_CXX_FOUND)

				target_link_libraries(MyTarget	PUBLIC	OpenMP::OpenMP_CXX)

endif()

This	not	only	is	cleaner	than	the	old	method,	it	will	also	correctly	set	the	library	link	line	differently	from	the	compile	line	if
needed.	In	CMake	3.12+,	this	will	even	support	OpenMP	on	macOS	(if	the	library	is	available,	such	as	with	 	brew	install
libomp).	However,	if	you	need	to	support	older	CMake,	the	following	works	on	CMake	3.1+:

#	For	CMake	<	3.9,	we	need	to	make	the	target	ourselves

if(NOT	TARGET	OpenMP::OpenMP_CXX)

				find_package(Threads	REQUIRED)

				add_library(OpenMP::OpenMP_CXX	IMPORTED	INTERFACE)

				set_property(TARGET	OpenMP::OpenMP_CXX

																	PROPERTY	INTERFACE_COMPILE_OPTIONS	${OpenMP_CXX_FLAGS})

				#	Only	works	if	the	same	flag	is	passed	to	the	linker;	use	CMake	3.9+	otherwise	(Intel,	AppleClang)

				set_property(TARGET	OpenMP::OpenMP_CXX

																	PROPERTY	INTERFACE_LINK_LIBRARIES	${OpenMP_CXX_FLAGS}	Threads::Threads)

endif()

target_link_libraries(MyTarget	PUBLIC	OpenMP::OpenMP_CXX)

Warning:	CMake	<	3.4	has	a	bug	in	the	Threads	package	that	requires	you	to	have	the	 	C		language	enabled.

OpenMP

72

https://cmake.org/cmake/help/latest/module/FindOpenMP.html

Boost	library
The	Boost	library	is	included	in	the	find	packages	that	CMake	provides,	but	it	has	a	couple	of	oddities	in	how	it	works.	See
FindBoost	for	a	full	description;	this	will	just	give	a	quick	overview	and	provide	a	recipe.	Be	sure	to	check	the	page	for	the
minimum	required	version	of	CMake	you	are	using	and	see	what	options	you	have.

First,	you	can	customize	the	behavior	of	the	Boost	libraries	selected	using	a	set	of	variables	that	you	set	before	searching	for
Boost.	There	are	a	growing	number	of	settings,	but	here	are	the	three	most	common	ones:

set(Boost_USE_STATIC_LIBS	OFF)

set(Boost_USE_MULTITHREADED	ON)

set(Boost_USE_STATIC_RUNTIME	OFF)

In	CMake	3.5,	imported	targets	were	added.	These	targets	handle	dependencies	for	you	as	well,	so	they	are	a	very	nice	way	to	add
Boost	libraries.	However,	CMake	has	the	dependency	information	baked	into	it	for	all	known	versions	of	Boost,	so	CMake	must
be	newer	than	Boost	for	these	to	work.	In	a	recent	merge	request,	CMake	started	assuming	that	the	dependencies	hold	from	the
last	version	it	knows	about,	and	will	use	that	(along	with	giving	a	warning).	This	functionality	was	backported	into	CMake	3.9.

The	import	targets	are	in	the	 	Boost::		namespace.	 	Boost::boost		is	the	header	only	part.	The	other	compiled	libraries	are
available,	and	include	dependencies	as	needed.

Here	is	an	example	for	using	the	 	Boost::filesystem		library:

set(Boost_USE_STATIC_LIBS	OFF)

set(Boost_USE_MULTITHREADED	ON)

set(Boost_USE_STATIC_RUNTIME	OFF)

find_package(Boost	1.50	REQUIRED	COMPONENTS	filesystem)

message(STATUS	"Boost	version:	${Boost_VERSION}")

#	This	is	needed	if	your	Boost	version	is	newer	than	your	CMake	version

#	or	if	you	have	an	old	version	of	CMake	(<3.5)

if(NOT	TARGET	Boost::filesystem)

				add_library(Boost::filesystem	IMPORTED	INTERFACE)

				set_property(TARGET	Boost::filesystem	PROPERTY

								INTERFACE_INCLUDE_DIRECTORIES	${Boost_INCLUDE_DIR})

				set_property(TARGET	Boost::filesystem	PROPERTY

								INTERFACE_LINK_LIBRARIES	${Boost_LIBRARIES})

endif()

target_link_libraries(MyExeOrLibrary	PUBLIC	Boost::filesystem)

Boost

73

https://cmake.org/cmake/help/latest/module/FindBoost.html
https://gitlab.kitware.com/cmake/cmake/merge_requests/1172

MPI
To	add	MPI,	like	OpenMP,	you'll	be	best	off	with	CMake	3.9+.

find_package(MPI	REQUIRED)

message(STATUS	"Run:	${MPIEXEC}	${MPIEXEC_NUMPROC_FLAG}	${MPIEXEC_MAX_NUMPROCS}	${MPIEXEC_PREFLAGS}	EXECUTABLE	

${MPIEXEC_POSTFLAGS}	ARGS")

target_link_libraries(MyTarget	PUBLIC	MPI::MPI_CXX)

However,	you	can	imitate	this	on	CMake	3.1+	with:

find_package(MPI	REQUIRED)

#	For	supporting	CMake	<	3.9:

if(NOT	TARGET	MPI::MPI_CXX)

				add_library(MPI::MPI_CXX	IMPORTED	INTERFACE)

				set_property(TARGET	MPI::MPI_CXX

																	PROPERTY	INTERFACE_COMPILE_OPTIONS	${MPI_CXX_COMPILE_FLAGS})

				set_property(TARGET	MPI::MPI_CXX

																	PROPERTY	INTERFACE_INCLUDE_DIRECTORIES	"${MPI_CXX_INCLUDE_PATH}")

				set_property(TARGET	MPI::MPI_CXX

																	PROPERTY	INTERFACE_LINK_LIBRARIES	${MPI_CXX_LINK_FLAGS}	${MPI_CXX_LIBRARIES})

endif()

message(STATUS	"Run:	${MPIEXEC}	${MPIEXEC_NUMPROC_FLAG}	${MPIEXEC_MAX_NUMPROCS}	${MPIEXEC_PREFLAGS}	EXECUTABLE	

${MPIEXEC_POSTFLAGS}	ARGS")

target_link_libraries(MyTarget	PUBLIC	MPI::MPI_CXX)

MPI

74

ROOT
ROOT	is	a	C++	Toolkit	for	High	Energy	Physics.	It	is	huge.	There	are	really	a	lot	of	ways	to	use	it	in	CMake,	though	many/most
of	the	examples	you'll	find	are	probably	wrong.	Here's	my	recommendation.

Most	importantly,	there	are	lots	of	improvements	in	CMake	support	in	more	recent	versions	of	ROOT	-	Using	6.16+	is	much,
much	easier!	If	you	really	must	support	6.14	or	earlier,	see	the	section	at	the	end.	There	were	further	improvements	in	6.20,	as
well,	it	behaves	much	more	like	a	proper	CMake	project,	and	exports	C++	standard	features	for	targets,	etc.

Finding	ROOT

ROOT	6.10+	supports	config	file	discovery,	so	you	can	just	do:

find_package(ROOT	6.16	CONFIG	REQUIRED)

to	attempt	to	find	ROOT.	If	you	don't	have	your	paths	set	up,	you	can	pass	 	-DROOT_DIR=$ROOTSYS/cmake		to	find	ROOT.	(But,
really,	you	should	source	 	thisroot.sh).

The	right	way	(Targets)

ROOT	6.12	and	earlier	do	not	add	the	include	directory	for	imported	targets.	ROOT	6.14+	has	corrected	this	error,	and	required
target	properties	have	been	getting	better.	This	method	is	rapidly	becoming	easier	to	use	(see	the	example	at	the	end	of	this	page
for	the	older	ROOT	details).

To	link,	just	pick	the	libraries	you	want	to	use:

add_executable(RootSimpleExample	SimpleExample.cxx)

target_link_libraries(RootSimpleExample	PUBLIC	ROOT::Physics)

If	you'd	like	to	see	the	default	list,	run	 	root-config	--libs		on	the	command	line.	In	Homebrew	ROOT	6.18	this	would	be:

	ROOT::Core	

	ROOT::Gpad	

	ROOT::Graf3d	

	ROOT::Graf	

	ROOT::Hist	

	ROOT::Imt	

	ROOT::MathCore	

	ROOT::Matrix	

	ROOT::MultiProc	

	ROOT::Net	

	ROOT::Physics	

	ROOT::Postscript	

	ROOT::RIO	

	ROOT::ROOTDataFrame	

	ROOT::ROOTVecOps	

	ROOT::Rint	

	ROOT::Thread	

	ROOT::TreePlayer	

ROOT

75

	ROOT::Tree	

The	old	global	way

ROOT	provides	a	utility	to	set	up	a	ROOT	project,	which	you	can	activate	using	 	include("${ROOT_USE_FILE}")	.	This	will
automatically	make	ugly	directory	level	and	global	variables	for	you.	It	will	save	you	a	little	time	setting	up,	and	will	waste
massive	amounts	of	time	later	if	you	try	to	do	anything	tricky.	As	long	as	you	aren't	making	a	library,	it's	probably	fine	for	simple
scripts.	Includes	and	flags	are	set	globally,	but	you'll	still	need	to	link	to	 	${ROOT_LIBRARIES}		yourself,	along	with	possibly
	ROOT_EXE_LINKER_FLAGS		(You	will	have	to	 	separate_arguments		first	before	linking	or	you	will	get	an	error	if	there	are	multiple
flags,	like	on	macOS).	Also,	before	6.16,	you	have	to	manually	fix	a	bug	in	the	spacing.

Here's	what	it	would	look	like:

#	Sets	up	global	settings

include("${ROOT_USE_FILE}")

#	This	is	required	for	ROOT	<	6.16

#	string(REPLACE	"-L	"	"-L"	ROOT_EXE_LINKER_FLAGS	"${ROOT_EXE_LINKER_FLAGS}")

#	This	is	required	on	if	there	is	more	than	one	flag	(like	on	macOS)

separate_arguments(ROOT_EXE_LINKER_FLAGS)

add_executable(RootUseFileExample	SimpleExample.cxx)

target_link_libraries(RootUseFileExample	PUBLIC	${ROOT_LIBRARIES}

																																																${ROOT_EXE_LINKER_FLAGS})

Components

Find	ROOT	allows	you	to	specify	components.	It	will	add	anything	you	list	to	 	${ROOT_LIBRARIES}	,	so	you	might	want	to	build
your	own	target	using	that	to	avoid	listing	the	components	twice.	This	did	not	solve	dependencies;	it	was	an	error	to	list	 	RooFit	
but	not	 	RooFitCore	.	If	you	link	to	 	ROOT::RooFit		instead	of	 	${ROOT_LIBRARIES}	,	then	 	RooFitCore		is	not	required.

Dictionary	generation

Dictionary	generation	is	ROOT's	way	of	working	around	the	missing	reflection	feature	in	C++.	It	allows	ROOT	to	learn	the
details	of	your	class	so	it	can	save	it,	show	methods	in	the	Cling	interpreter,	etc.	Your	source	code	will	need	the	following
modifications	to	support	dictionary	generation:

Your	class	definition	should	end	with	 	ClassDef(MyClassName,	1)	
Your	class	implementation	should	have	 	ClassImp(MyClassName)		in	it

ROOT	provides	 	rootcling		and	 	genreflex		(a	legacy	interface	to	 	rootcling)	binaries	which	produce	the	source	files	required
to	build	the	dictionary.	It	also	defines	 	root_generate_dictionary	,	a	CMake	function	to	invoke	 	rootcling		during	the	build
process.

To	load	this	function,	first	include	the	ROOT	macros:

include("${ROOT_DIR}/modules/RootNewMacros.cmake")

#	For	ROOT	versions	than	6.16,	things	break

#	if	nothing	is	in	the	global	include	list!

if	(${ROOT_VERSION}	VERSION_LESS	"6.16")

				include_directories(ROOT_NONEXISTENT_DIRECTORY_HACK)

endif()

ROOT

76

https://root.cern.ch/how/integrate-root-my-project-cmake

The	 	if(...)		condition	is	added	to	fix	a	bug	in	the	NewMacros	file	that	causes	dictionary	generation	to	fail	if	there	is	not	at	least
one	global	include	directory	or	a	 	inc		folder.	Here	I'm	including	a	non-existent	directory	just	to	make	it	work.	There	is	no
	ROOT_NONEXISTENT_DIRECTORY_HACK		directory.

	rootcling		uses	a	special	header	file	with	a	specific	formula	to	determine	which	parts	to	generate	dictionaries	for.	The	name	of
this	file	may	have	any	prefix,	but	must	end	with	 	LinkDef.h	.	Once	you	have	written	this	header	file,	the	dictionary	generation
function	can	be	invoked.

Manually	building	the	dictionary

Sometimes,	you	might	want	to	ask	ROOT	to	generate	the	dictionary,	and	then	add	the	source	file	to	your	library	target	yourself.
You	can	call	the	 	root_generate_dictionary		with	the	name	of	the	dictionary,	e.g.	 	G__Example	,	any	required	header	files,	and
finally	the	special	 	LinkDef.h		file,	listed	after	 	LINKDEF	:

root_generate_dictionary(G__Example	Example.h	LINKDEF	ExampleLinkDef.h)

This	command	will	create	three	files:

	${NAME}.cxx	:	This	file	should	be	included	in	your	sources	when	you	make	your	library.
	lib{NAME}.rootmap		(G__		prefix	removed):	The	rootmap	file	in	plain	text
	lib{NAME}_rdict.pcm		(G__		prefix	removed):	A	ROOT	pre-compiled	module	file	The	name	(${NAME})	of	the	targetthat
you	must	create	is	determined	by	the	dictionary	name;	if	the	dictionary	name	starts	with	 	G__	,	it	will	be	removed.
Otherwise,	the	name	is	used	directly.

The	final	two	output	files	must	sit	next	to	the	library	output.	This	is	done	by	checking	 	CMAKE_LIBRARY_OUTPUT_DIRECTORY		(it	will
not	pick	up	local	target	settings).	If	you	have	a	libdir	set	but	you	don't	have	(global)	install	locations	set,	you'll	also	need	to	set
	ARG_NOINSTALL		to	 	TRUE	.

Building	the	dictionary	with	an	existing	target

Instead	of	manually	adding	the	generated	to	your	library	sources,	you	can	ask	ROOT	to	do	this	for	you	by	passing	a	 	MODULE	
argument.	This	argument	should	specify	the	name	of	an	existing	build	target:

add_library(Example)

root_generate_dictionary(G__Example	Example.h	MODULE	Example	LINKDEF	ExampleLinkDef.h)

The	full	name	of	the	dictionary	(e.g.	 	G__Example)	should	not	be	identical	to	the	 	MODULE		argument.

Using	Old	ROOT
If	you	really	have	to	use	older	ROOT,	you'll	need	something	like	this:

#	ROOT	targets	are	missing	includes	and	flags	in	ROOT	6.10	and	6.12

set_property(TARGET	ROOT::Core	PROPERTY

				INTERFACE_INCLUDE_DIRECTORIES	"${ROOT_INCLUDE_DIRS}")

#	Early	ROOT	does	not	include	the	flags	required	on	targets

add_library(ROOT::Flags_CXX	IMPORTED	INTERFACE)

#	ROOT	6.14	and	earlier	have	a	spacing	bug	in	the	linker	flags

string(REPLACE	"-L	"	"-L"	ROOT_EXE_LINKER_FLAGS	"${ROOT_EXE_LINKER_FLAGS}")

ROOT

77

https://root.cern.ch/selecting-dictionary-entries-linkdefh
https://inspirehep.net/literature/1413967

#	Fix	for	ROOT_CXX_FLAGS	not	actually	being	a	CMake	list

separate_arguments(ROOT_CXX_FLAGS)

set_property(TARGET	ROOT::Flags_CXX	APPEND	PROPERTY

				INTERFACE_COMPILE_OPTIONS	${ROOT_CXX_FLAGS})

#	Add	definitions

separate_arguments(ROOT_DEFINITIONS)

foreach(_flag	${ROOT_EXE_LINKER_FLAG_LIST})

				#	Remove	-D	or	/D	if	present

				string(REGEX	REPLACE	[=[^[-//]D]=]	""	_flag	${_flag})

				set_property(TARGET	ROOT::Flags	APPEND	PROPERTY	INTERFACE_LINK_LIBRARIES	${_flag})

endforeach()

#	This	also	fixes	a	bug	in	the	linker	flags

separate_arguments(ROOT_EXE_LINKER_FLAGS)

set_property(TARGET	ROOT::Flags_CXX	APPEND	PROPERTY

				INTERFACE_LINK_LIBRARIES	${ROOT_EXE_LINKER_FLAGS})

#	Make	sure	you	link	with	ROOT::Flags_CXX	too!

ROOT

78

A	Simple	ROOT	Project
This	is	a	minimal	example	of	a	ROOT	project	using	the	UseFile	system	and	without	a	dictionary.

examples/root-usefile/CMakeLists.txt

cmake_minimum_required(VERSION	3.1...3.29)

project(RootUseFileExample	LANGUAGES	CXX)

find_package(ROOT	6.16	CONFIG	REQUIRED)

#	Sets	up	global	settings

include("${ROOT_USE_FILE}")

#	This	is	required	for	ROOT	<	6.16

#	string(REPLACE	"-L	"	"-L"	ROOT_EXE_LINKER_FLAGS	"${ROOT_EXE_LINKER_FLAGS}")

#	This	is	required	on	if	there	is	more	than	one	flag	(like	on	macOS)

separate_arguments(ROOT_EXE_LINKER_FLAGS)

add_executable(RootUseFileExample	SimpleExample.cxx)

target_link_libraries(RootUseFileExample	PUBLIC	${ROOT_LIBRARIES}

																																																${ROOT_EXE_LINKER_FLAGS})

examples/root-usefile/SimpleExample.cxx

#include	<TLorentzVector.h>

int	main()	{

				TLorentzVector	v(1,2,3,4);

				v.Print();

				return	0;

}

UseFile	Example

79

A	Simple	ROOT	Project
This	is	a	minimal	example	of	a	ROOT	project	using	the	target	system	and	without	a	dictionary.

examples/root-simple/CMakeLists.txt

cmake_minimum_required(VERSION	3.1...3.29)

project(RootSimpleExample	LANGUAGES	CXX)

#	Finding	the	ROOT	package

find_package(ROOT	6.16	CONFIG	REQUIRED)

#	Adding	an	executable	program	and	linking	to	needed	ROOT	libraries

add_executable(RootSimpleExample	SimpleExample.cxx)

target_link_libraries(RootSimpleExample	PUBLIC	ROOT::Physics)

examples/root-simple/SimpleExample.cxx

#include	<TLorentzVector.h>

int	main()	{

				TLorentzVector	v(1,2,3,4);

				v.Print();

				return	0;

}

Simple	Example

80

Dictionary	Example
This	is	an	example	of	building	a	module	that	includes	a	dictionary	in	CMake.	Instead	of	using	the	ROOT	suggested	flags,	we	will
manually	add	threading	via	 	find_package	,	which	is	the	only	important	flag	in	the	list	on	most	systems.

examples/root-dict/CMakeLists.txt

cmake_minimum_required(VERSION	3.4...3.29)

project(RootDictExample	LANGUAGES	CXX)

set(CMAKE_CXX_STANDARD

				11

				CACHE	STRING	"C++	standard	to	use")

set(CMAKE_CXX_STANDARD_REQUIRED	ON)

set(CMAKE_CXX_EXTENSIONS	OFF)

set(CMAKE_PLATFORM_INDEPENDENT_CODE	ON)

find_package(ROOT	6.20	CONFIG	REQUIRED)

#	If	you	want	to	support	<6.20,	add	this	line:

#	include("${ROOT_DIR}/modules/RootNewMacros.cmake")

#	However,	it	was	moved	and	included	by	default	in	6.201

root_generate_dictionary(G__DictExample	DictExample.h	LINKDEF	DictLinkDef.h)

add_library(DictExample	SHARED	DictExample.cxx	DictExample.h	G__DictExample.cxx)

target_include_directories(DictExample	PUBLIC	"${CMAKE_CURRENT_SOURCE_DIR}")

target_link_libraries(DictExample	PUBLIC	ROOT::Core)

##	Alternative	to	add	the	dictionary	to	an	existing	target:

#	add_library(DictExample	SHARED	DictExample.cxx	DictExample.h)

#	target_include_directories(DictExample	PUBLIC	"${CMAKE_CURRENT_SOURCE_DIR}")

#	target_link_libraries(DictExample	PUBLIC	ROOT::Core)

#	root_generate_dictionary(G__DictExample	DictExample.h	MODULE	DictExample	LINKDEF	DictLinkDef.h)

Supporting	files
This	is	just	a	simple-as-possible	class	definition,	with	one	method:

examples/root-dict/DictExample.cxx

#include	"DictExample.h"

Double_t	Simple::GetX()	const	{return	x;}

ClassImp(Simple)

examples/root-dict/DictExample.h

#pragma	once

#include	<TROOT.h>

class	Simple	{

				Double_t	x;

Dictionary	Example

81

public:

				Simple()	:	x(2.5)	{}

				Double_t	GetX()	const;

				ClassDef(Simple,1)

};

We	need	a	 	LinkDef.h	,	as	well.

examples/root-dict/DictLinkDef.h

//	See:	https://root.cern.ch/selecting-dictionary-entries-linkdefh

#ifdef	__CINT__

#pragma	link	off	all	globals;

#pragma	link	off	all	classes;

#pragma	link	off	all	functions;

#pragma	link	C++	nestedclasses;

#pragma	link	C++	class	Simple+;

#endif

Testing	it

This	is	an	example	of	a	macro	that	tests	the	correct	generation	from	the	files	listed	above.

examples/root-dict/CheckLoad.C

{

gSystem->Load("libDictExample");

Simple	s;

cout	<<	s.GetX()	<<	endl;

TFile	*_file	=	TFile::Open("tmp.root",	"RECREATE");

gDirectory->WriteObject(&s,	"MyS");

Simple	*MyS	=	nullptr;

gDirectory->GetObject("MyS",	MyS);

cout	<<	MyS->GetX()	<<	endl;

_file->Close();

}

Dictionary	Example

82

Minuit2
Minuit2	is	available	in	standalone	mode,	for	use	in	cases	where	ROOT	is	either	not	available	or	not	built	with	Minuit2	enabled.
This	will	cover	recommended	usages,	as	well	as	some	aspects	of	the	design.

Usage

Minuit2	can	be	used	in	any	of	the	standard	CMake	ways,	either	from	the	ROOT	source	or	from	a	standalone	source	distribution:

#	Check	for	Minuit2	in	ROOT	if	you	want

#	and	then	link	to	ROOT::Minuit2	instead

add_subdirectory(minuit2)	#	or	root/math/minuit2

#	OR

find_package(Minuit2	CONFIG)	#	Either	build	or	install

target_link_libraries(MyProgram	PRIVATE	Minuit2::Minuit2)

Development

Minuit2	is	a	good	example	of	potential	solutions	to	the	problem	of	integrating	a	modern	(CMake	3.1+)	build	into	an	existing
framework.

To	handle	the	two	different	CMake	systems,	the	main	 	CMakeLists.txt		defines	common	options,	then	calls	a
	Standalone.cmake		file	if	this	is	not	building	as	part	of	ROOT.

The	hardest	part	in	the	ROOT	case	is	that	Minuit2	requires	files	that	are	outside	the	 	math/minuit2		directory.	This	was	solved	by
adding	a	 	copy_standalone.cmake		file	with	a	function	that	takes	a	filename	list	and	then	either	returns	a	list	of	filenames	inplace
in	the	original	source,	or	copies	files	into	the	local	source	and	returns	a	list	of	the	new	locations,	or	returns	just	the	list	of	new
locations	if	the	original	source	does	not	exist	(standalone).

#	Copies	files	into	source	directory

cmake	/root/math/minuit2	-Dminuit2-standalone=ON

#	Makes	.tar.gz	from	source	directory

make	package_source

#	Optional,	clean	the	source	directory

make	purge

This	is	only	intended	for	developers	wanting	to	produce	source	packages	-	a	normal	user	does	not	pass	this	option	and	will	not
create	source	copies.

You	can	use	 	make	install		or	 	make	package		(binary	packages)	without	adding	this	 	standalone		option,	either	from	inside	the
ROOT	source	or	from	a	standalone	package.

Minuit2

83

	An Introduction to Modern CMake
	Installing CMake
	Running CMake
	Do's and Don'ts
	What's new in CMake

	Introduction to the Basics
	Variables and the Cache
	Programming in CMake
	Communicating with your code
	How to Structure Your Project
	Running Other Programs
	A Simple Example

	Adding Features
	C++11 and Beyond
	Small but common needs
	Utilities
	Useful modules
	IDEs
	Debugging

	Including Projects
	Submodule
	DownloadProject
	Fetch (CMake 3.11)

	Testing
	GoogleTest
	Catch

	Exporting and Installing
	Installing
	Exporting
	Packaging

	Looking for Libraries (Packages)
	CUDA
	OpenMP
	Boost
	MPI
	ROOT
	UseFile Example
	Simple Example
	Dictionary Example

	Minuit2

