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[DISCLAIMER]
These notes are meant to provide intuition on the basic mechanisms of VARs

As such, most of the material covered here is treated in a very informal way

If you crave a formal treatment of these topics, you should stop here and buy a
copy of Hamilton’s “Time Series Analysis”

The Matlab codes accompanying the notes are available at:
https://github.com/ambropo/VAR-Toolbox
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The job of macro-econometricians

▶ In their 2001 Journal of Economic Perspectives’ article “Vector Autoregressions” Stock and
Watson (2001) describe the job of macroeconometricians as consisting of the following tasks

✱ Describe and summarize macroeconomic time series

✱ Make forecasts

✱ Recover the structure of the macroeconomy from the data

✱ Advise macroeconomic policy-makers

▶ Vector autoregressive models (VARs) are a statistical tool to perform these tasks

Main focus of these notes
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What can we do with VARs?

▶ Consider a (over-simplistic) bivariate VAR with the following (demeaned) variables:
✱ Real GDP growth (yt)

✱ Policy rate (rt)

▶ A VAR can help us answer the following questions
[1] What is the dynamic behavior of these variables? How do these variables interact?

[2] What is the most likely path of GDP in the next few quarters?

[3] What is the effect of a monetary policy shock on GDP?

[4] What has been the historical contribution of monetary policy shocks to GDP fluctuations?
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VAR Basics
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What is a Vector Autoregression (VAR)?

▶ Consider a (2× 1) vector of zero-mean time series xt, composed of t observations and an
initial condition x0

xt =
�

x1t
x2t

�

=

�

x11 x12 ... x1t
x21 x22 ... x2t

�

and x0 =

�

x10
x20

�

▶ Assume that the two time series in xt are covariance stationary, which means (for i = 1, 2)
✱ Constant mean E[xit] = μi

✱ Constant variance Var[xit] = σ2i
✱ Constant auto-covariance Cov[xit, xit+τ] = γi(τ)

▶ A structural VAR of order 1 is given by

xt = Φxt−1 + Bϵtwhere
✱ Φ and B are (2× 2) matrices of coefficients
✱ ϵt is an (2× 1) vector of unobservable zero-mean white noise processes
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Three different ways of writing the same thing

▶ There are different ways to write the same structural VAR(1)

xt = Φxt−1 + Bϵt

▶ For example, we can write it in matrix form
�

x1t
x2t

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

x1t−1
x2t−1

�

+

�

b11 b12
b21 b22

��

ϵ1t
ϵ2t

�

▶ Or as a system of linear equations
¨

x1t = ϕ11x1,t−1 + ϕ12x1,t−1 + b11ϵ1t + b12ϵ2t
x2t = ϕ21x2,t−1 + ϕ22x2,t−1 + b21ϵ1t + b22ϵ2t
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The structural shocks

▶ We defined ϵt as a vector of unobservable zero mean white noise processes

▶ What does it mean? The elements of ϵt are serially uncorrelated and independent of each
other

▶ In other words we assumed
ϵt = (ϵ′1t, ϵ

′
2t)
′ ∼ N (0, I2)

where

Var(ϵt) = Σϵ =

�

1 0
0 1

�

and Corr(ϵt) =
�

1 0
0 1

�
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Why is it called ‘structural’ VAR?

▶ Go back to our bivariate structural VAR(1)
�

x1t
x2t

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

x1t−1
x2t−1

�

+

�

b11 b12
b21 b22

��

ϵ1t
ϵ2t

�

▶ The structural VAR can be thought of as a description of the true structure of the economy
✱ E.g.: an approximation of the solution of a DSGE model

▶ The structural shocks are shocks with a well-defined economic interpretation
✱ E.g.: TFP shocks or monetary policy shocks

✱ As ϵt ∼ N (0, I2) we can move one shock keeping the other shocks fixed

✱ That is: we can focus on the causal effect of one shock at the time
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Structural VARs can answer many interesting questions...

▶ Go back to our bivariate structural VAR(1). To make a concrete example, assume that
✱ x1t and x2t are output growth (yt) and the policy rate (rt), both demeaned

✱ ϵ1t and ϵ2t are a demand shock (ϵDemandt ) and a monetary policy shock (ϵMonPolt )

✱ B is known (we’ll get back to this in a second)

�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

▶ What is the effect of monetary policy shocks on output?
✱ The coefficient b12 captures the ‘impact effect’ of a monetary policy shock on output growth

Impact matrix

✱ The Φ matrix allows us to trace the ‘dynamic effect’ of the monetary policy shock over time

Dynamic matrix

✱ (We can add additional variables and look at other shocks: aggregate supply, oil price,...)
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... but the estimation of structural VARs is tricky

▶ Problem The structural shocks ϵt are unobserved. So, how can we estimate B?
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

▶ Best we can do is to ‘bundle’ the ϵt into a single object:

ut = Bϵt ⇒
�

uyt
urt

�

=

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

⇒
¨

uyt = b11ϵ
Demand
t + b12ϵ

MonPol
t

urt = b21ϵ
Demand
t + b22ϵ

MonPol
t

▶ Why is this useful? The VAR becomes

xt = Φxt−1 + ut

▶ Now we can estimate Φ and ut with OLS (where ut will be OLS residuals)
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The reduced-form VAR

▶ This alternative formulation of the VAR is called the reduced-form VAR representation

xt = Φxt−1 + ut

▶ In matrix form
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

uyt
urt

�

▶ Or as a system of linear equations
�

yt = ϕ11yt−1 + ϕ12rt−1 + uyt
rt = ϕ21yt−1 + ϕ22rt−1 + urt
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The reduced-form covariance matrix

▶ A key object of interest in VARs is the covariance matrix of the reduced-form residuals

Σu = E
�

utu
′
t
�

=

�

σ2y σ2yr
σ2yr σ2r

�

▶ Differently from the structural shocks (which are orthogonal), the reduced-form residuals are
correlated among each other

▶ This is because the elements of ut inherit all the contemporaneous relations among the
endogenous variables xt

✱ To see that, remember how the reduced form residuals are defined
¨

uyt = b11ϵ
Demand
t + b12ϵ

MonPol
t

urt = b21ϵ
Demand
t + b22ϵ

MonPol
t
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▶ This is the essence of identification in VARs (we’ll get back to this later)
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The Wold representation

▶ Let’s introduce another representation of the VAR that will be useful later

▶ Start from the structural VAR representation

xt = Φxt−1 + Bϵt

▶ The Wold representation can be obtained by substituting recursively the elements on the
right hand side of the equal sign

xt = Φxt−1 + Bϵt
= Φ
�

Φxt−2 + Bϵt−1
�

+ Bϵt
xt-1

= Φ
2xt−2 +ΦBϵt−1 + Bϵt

= ...

= Φ
tx0 +

t−1
∑

j=0
Φ
jBϵt−j
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The Wold representation

▶ The Wold representation shows that each observation (xt) can be re-written as a combination
of two terms

xt = Φ
tx0 +

t−1
∑

j=0
Φ
jBϵt−j

✱ The sum of current and past structural shocks

Current & past shocks

✱ An initial condition

Initial condition

▶ Now let t→∞ to get

xt = Φ
∞xt−∞ +

∞
∑

j=0
Φ
jBϵt−j

▶ But: we assumed that xt is covariance stationary. How do these infinite sums relate to that
assumption?
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The Wold representation
VAR Stability

▶ A VAR is stable if the effect of shocks progressively dissipate over time. For that to happen we
need Φ

j to converge to zero

xt = Φ
∞xt−∞ +

∞
∑

j=0
Φ
jBϵt−j

▶ Why does this matter? If shocks have permanent effects
✱ The mean and the variance of xt will depend on the history of shocks
✱ Violates covariance stationary assumption→ VAR displays unstable dynamics

▶ Definition A VAR is called stable iff all the eigenvalues of Φ are less than 1 in modulus.
More formally:

det
�

Φ− λI2
�

= 0 |λ| < 1

▶ Implication In the absence of shocks, the VAR will converge to its equilibrium (i.e. its
unconditional mean)
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The Wold representation
The unconditional mean of the VAR

▶ First note that if the eigenvalues of Φ are less than 1 in modulus we have

Φ
∞

= 0 and
∞
∑

j=0
Φ
j
= (I2 − Φ)

−1

Geometric series

▶ Because of white noise assumption of the ϵt, the unconditional mean is simply given by

E
�

xt
�

= Φ
∞xt−∞ +

∞
∑

j=0
Φ
jBE
�

ϵt−j
�

= 0

▶ Note that if the VAR had a constant (α) an additional term would show up in the Wold
representation

xt = Φ
∞xt−∞ +

∞
∑

j=0
Φ
jα+

∞
∑

j=0
Φ
jBϵt−j

▶ The unconditional mean in this case is
E
�

xt
�

= (I2 − Φ)
−1α
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The general form of the stationary structural VAR(p) model

▶ The basic bivariate VAR(1) model used so far may be too parsimonious to sufficiently
summarize the dynamic relations of the data

▶ Model can be enriched along the following dimensions
✱ Increase the number of endogenous variables (k)

✱ Increase the number of lags (p)

✱ Add deterministic terms (e.g. time trend or seasonal dummy variables)

✱ Add exogenous variables (e.g. price of oil from the point of view of a small country)

▶ The general form of the VAR(p) model with deterministic terms (Zt) and exogenous variables
(Wt) is given by

xt = Φ1xt−1 +Φ2xt−2 + ...+Φpxt−p +ΛZt +ΨWt + Bϵt
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Structural Dynamic Analysis
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Structural Dynamic Analysis

▶ Assume for the moment that we know how to ‘identify’ structural shocks→ B matrix is known

▶ What can we do with our structural VAR?

✱ Quantify the dynamic effect of a shock over time⇒ Impulse responses

✱ Quantify how important a shock is in explaining the variation in the endogenous variables (on
average)⇒ Forecast error variance decomposition

✱ Quantify how important a shock was in driving the behavior of the endogenous variables in a
specific time period in the past⇒ Historical decompositions

▶ This is what is called structural dynamic analysis
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Structural Dynamic Analysis
Impulse responses
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Impulse response functions

▶ Impulse response functions (IR) answer the following question:

What is the response over time of the VAR’s endogenous variables to an innovation in the
structural shocks, assuming that the other structural shocks are kept to zero?

▶ IR allow to single out the effect of a shock (e.g. its impact and persistence) keeping all else
equal

▶ Example What is the impact of a monetary policy shock to GDP?
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How to compute impulse response functions

▶ Consider our simple bivariate VAR
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

▶ Define a 2× 1 impulse selection vector (s) that takes value of one for the structural shock that
we want to consider.

▶ For example, to compute the IR to the demand shock, define s as:

s =
�

1
0

�

▶ The impulse responses to ϵDemandt can be easily computed with the following equation

xt = Φxt−1 + Bs
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How to compute impulse response functions (cont’d)

▶ The IR can be computed recursively as follows
�

IRt = Bs for t = 0
IRt = ΦIRt−1 for t = 1, ...,h

▶ Note that the impact response is simply given by the elements of the impact matrix B selected
by s...

�

IRy0
IRr0

�

=

�

b11 b12
b21 b22

��

1
0

�

=

�

b11
b21

�

▶ ... while the responses at longer horizons are given the transition matrix
�

IRyt
IRrt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

IRyt−1
IRrt−1

�

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 25



The companion matrix [Back to basics]

▶ So far, we considered simple VAR(1) specifications. But what to do if the VAR has p > 1?

▶ Every VAR(p) can be written as a VAR(1) using the companion representation

✱ For example, take a VAR(2)
�

yt
rt

�

=

�

ϕ111 ϕ112
ϕ121 ϕ122

��

yt−1
rt−1

�

+

�

ϕ211 ϕ212
ϕ221 ϕ222

��

yt−2
rt−2

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

✱ Re-write the VAR(2) as








yt
rt
yt−1
rt−1









=









ϕ111 ϕ112 ϕ211 ϕ212
ϕ121 ϕ122 ϕ221 ϕ222
1 0 0 0
0 1 0 0

















yt−1
rt−1
yt−2
rt−2









+









b11 b12 0 0
b21 b22 0 0
0 0 0 0
0 0 0 0



















ϵDemandt
ϵMonPolt
0
0











✱ Which is a VAR(1) where Φ̃ is the companion matrix

x̃t = Φ̃x̃t−1 + B̃ϵt

Companion matrix
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Structural DynamicAnalysis
Forecast Error Variance Decompositions
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Forecast error variance decompositions

▶ Forecast error variance decompositions (VD) answer the following question:

What portion of the variance of the VAR’s forecast errors (at a given horizon h) is due to each
structural shock?

▶ VD provide information about the relative importance of each structural shock in affecting the
forecast error variance of the VAR’s endogenous variables

▶ Example What is the (average) importance of demand shocks in driving GDP forecast errors?
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How to compute forecast error variance decompositions

▶ The forecast error of a variable at horizon t+ h is the change in the variable that couldn’t have
been forecast between t− 1 and t+ h due to the realization of the structural shocks.

▶ For example, at h = 0 we can compute the forecast error as
xt − Et−1[xt] = Φxt−1 + Bϵt − Φxt−1 = Bϵt

▶ At h = 1, we have
xt+1 − Et−1[xt+1] = Φxt + Bϵt+1 − Φ

2xt−1 =
= Φ(Φxt−1 + Bϵt) + Bϵt+1 − Φ

2xt−1 = ΦBϵt + Bϵt+1

▶ So, in general we have

FEt+h = xt+h − Et−1[xt+h] =
h
∑

i=0
Φ
h−iBϵt+h

▶ What is the variance of FEt+h?
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Basic properties of the variance [Back to basics]

▶ If X is a random variable x and a is a constant
✱ Var (x+ a) = Var (x)
✱ Var (ax) = a2Var (x)

▶ If Y is a random variable and b is a constant
✱ Var (aX+ bY) = a2Var (x) + b2Var (Y) + 2abCov (X,Y)

▶ Since the structural errors are independent, it follows that COV
�

ϵDemandt+1 , ϵMonPolt+1

�

= 0
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How to compute forecast error variance decompositions (cont’d)
▶ For simplicity consider h = 0, namely

Var
�

FEt
�

= Var
�

xt − Et−1[xt]
�

= Var
�

Bϵt
�

▶ Recalling that Var
�

ϵt
�

= I2 and that the structural shocks are orthogonal to each other, the
variance of the forecast error can be computed as

Var
�

yt − Et−1[yt]
�

= b211Var
�

ϵDemandt

�

+ b212Var
�

ϵMonPolt

�

= b211 + b212
Var
�

rt − Et−1[rt]
�

= b221Var
�

ϵDemandt

�

+ b222Var
�

ϵMonPolt

�

= b221 + b222

▶ What portion of the variance of the forecast error at h = 0 is due to each structural shock?














VDϵ
Demand

y0 =
b211

b211+b
2
12

VDϵ
MonPol

y0 =
b212

b211+b
2
12

︸ ︷︷ ︸

This sums up to 1















VDϵ
Demand

r0 =
b221

b221+b
2
22

VDϵ
MonPol

r0 =
b222

b221+b
2
22

︸ ︷︷ ︸

This sums up to 1
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Structural Dynamic Analysis
Historical Decompositions
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Historical decompositions

▶ Historical decompositions (HD) answer the following question:What is the historical

contribution of each structural shock in driving deviations of the VAR’s the endogenous
variables away from their equilibrium?

▶ HD allow to track, at each point in time, the role of structural shocks in driving the VAR’s
endogenous variables away from their steady state

▶ Example What was the contribution of oil shocks in driving the fall in GDP growth in 1973:Q4?
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How to compute historical decompositions

▶ As an example, let’s compute the HD of of the endogenous variables for t = 2 in our simple
bivariate VAR

▶ Historical decompositions can be easily understood from the Wold representation of the VAR

xt = Φ
tx0 +

t−1
∑

j=0
Φ
jBϵt−j

▶ Using the Wold representation, we can write x2 as a function of present and past structural
shocks (ϵDemand and ϵMonPol) plus the initial condition (x0)

x2 = Φ
2x0
︸︷︷︸

init

+ ΦB
︸︷︷︸

Θ1

ϵ1 + B
︸︷︷︸

Θ0

ϵ2

▶ Re-write x2 in matrix form
�

y2
r2

�

=

�

inity
initr

�

+

�

θ111 θ112
θ121 θ122

�

�

ϵDemand2
ϵMonPol2

�

+

�

θ011 θ012
θ021 θ022

�

�

ϵDemand2
ϵMonPol2

�
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bivariate VAR

▶ Historical decompositions can be easily understood from the Wold representation of the VAR

xt = Φ
tx0 +

t−1
∑

j=0
Φ
jBϵt−j

▶ Using the Wold representation, we can write x2 as a function of present and past structural
shocks (ϵDemand and ϵMonPol) plus the initial condition (x0)

x2 = Φ
2x0
︸︷︷︸

init

+ ΦB
︸︷︷︸

Θ1

ϵ1 + B
︸︷︷︸

Θ0

ϵ2

▶ Re-write x2 in matrix form
�

y2
r2

�

=

�

inity
initr

�

+

�

θ111 θ112
θ121 θ122

�

�

ϵDemand2
ϵMonPol2

�

+

�

θ011 θ012
θ021 θ022

�

�

ϵDemand2
ϵMonPol2

�
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How to compute historical decompositions (cont’d)

▶ Then x2 can be expressed as






y2 = inity + θ111ϵ
Demand
1 + θ112ϵ

MonPol
1 + θ011ϵ

Demand
2 + θ012ϵ

MonPol
2

r2 = initr + θ121ϵ
Demand
1 + θ122ϵ

MonPol
1 + θ021ϵ

Demand
2 + θ022ϵ

MonPol
2

▶ The historical decomposition is given by


























HDϵ
Demand

y2 = θ111ϵ
Demand
1 + θ211ϵ

Demand
2

HDϵ
MonPol

y2 = θ112ϵ
MonPol
1 + θ212ϵ

MonPol
2

HDinity2 = inity
︸ ︷︷ ︸

This sums up to y2



























HDϵ
Demand

r2 = θ121ϵ
Demand
1 + θ021ϵ

Demand
2

HDϵ
MonPol

r2 = θ122ϵ
MonPol
1 + θ022ϵ

MonPol
2

HDinitr2 = initr
︸ ︷︷ ︸

This sums up to r2
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▶ Then x2 can be expressed as






y2 = inity + θ111ϵ
Demand
1 + θ112ϵ

MonPol
1 + θ011ϵ

Demand
2 + θ012ϵ

MonPol
2

r2 = initr + θ121ϵ
Demand
1 + θ122ϵ

MonPol
1 + θ021ϵ

Demand
2 + θ022ϵ

MonPol
2

▶ The historical decomposition is given by


























HDϵ
Demand

y2 = θ111ϵ
Demand
1 + θ211ϵ

Demand
2

HDϵ
MonPol

y2 = θ112ϵ
MonPol
1 + θ212ϵ

MonPol
2

HDinity2 = inity
︸ ︷︷ ︸

This sums up to y2




















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The Identification Problem
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Back to our reduced form VAR

▶ We have seen above that with OLS we can only estimate the reduced-form VAR (and not the
structural VAR)

▶ Assume we already have an OLS estimate of Φ̂ and ût:
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

uyt
urt

�

▶ Question What is the effect of a monetary policy shock on GDP growth?

▶ Unfortunately, the reduced form innovations (uyt or urt) are not going to help us in answering
the question
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Reduced-form VARs do not tell us anything about causality
▶ To see that, assume that the ‘true’ (and unobserved) model of the economy is given by

�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

▶ It is obvious that the reduced form innovations are a linear combination of the two structural
shocks

uyt = b11ϵ
Demand
t + b12ϵ

MonPol
t

urt = b21ϵ
Demand
t + b22ϵ

MonPol
t

▶ An increase in urt is not a monetary policy shock!
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Reduced-form VARs do not tell us anything about causality
▶ To see that, assume that the ‘true’ (and unobserved) model of the economy is given by

�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 b12
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

▶ It is obvious that the reduced form innovations are a linear combination of the two structural
shocks

uyt = b11ϵ
Demand
t + b12ϵ

MonPol
t

urt = b21ϵ
Demand
t + b22ϵ

MonPol
t

▶ An increase in urt could be due to
[1] A positive demand shock that increases both output growth and the policy rate
[2] Or a monetary policy shock that decreases output growth and increases the policy rate

▶ How to know whether it is [1] or [2]? This is the very nature of the identification problem!
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The identification problem

▶ The identification problem consists in finding a mapping from the reduced form VAR to its
structural counterpart

ut = Bϵt

▶ To do that, we can exploit the relation between reduced form and structural innovations to
write

Σu = E
�

utu
′
t
�

= E
�

Bϵt
�

Bϵt
�′�

= BE(ϵtϵ
′
t)B
′
= BΣϵB

′
= BB′

▶ The identification problem simply boils down to finding a B matrix that satisfies Σu = BB′

▶ Unfortunately this is not as easy as it sounds. Why?

✱ Hint: There are infinite different Bs that give you the same Σu
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The identification problem (cont’d)
▶ Think of Σu = BB′ as a system of equations

�

σ2y σ2yr
− σ2r

�

=

�

b11 b12
b21 b22

��

b11 b21
b12 b22

�

▶ Can be rewritten as














σ2y = b211 + b212
σ2yr = b11b21 + b12b22
σ2yr = b11b21 + b12b22
σ2r = b221 + b222

▶ Problem Because of the symmetry of the Σu matrix, the second and the third equation are
identical!

▶ We are left with 4 unknowns (the elements of B) but only 3 equations!
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Identification Schemes

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 42



How to solve the identification problem?
▶ Identification problem (recap)

✱ Identification→ Find a B that satisfies Σu = BB′

✱ There are infinite of such Bs

▶ In our simple example, we have to solve a system of 3 equations in 4 unknowns. How can we
do it?

Add a fourth equation

▶ Economic theory can help in providing the ‘missing’ equation
✱ Make an assumption about the structure of the economy based on your beliefs (e.g. long-run

monetary neutrality)

✱ Try to map this assumption into an equation that involves the VAR parameters

▶ The additional equation is known as a restriction
✱ That is: the additional equation restricts the set of infinite B matrices to a single one (or few ones)

that are consistent with your assumption
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Common identification schemes

▶ Zero (recursive) contemporaneous restrictions

▶ Zero (recursive) long-run restrictions

▶ Sign restrictions

▶ External instruments

▶ Combining sign restrictions and external instruments

▶ Other (narrative sign restrictions, maximization of forecast error variance,...)
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Common Identification Schemes
Zero short-run restrictions
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Zero contemporaneous restrictions

▶ Intuition Identification is achieved by assuming that some shocks have zero
contemporaneous effect on some of the endogenous variables

▶ References Sims (1980), Christiano et al. (1999)

▶ For example, assume that monetary policy works with a lag and has no contemporaneous
effects on output

▶ But how can we impose restrictions on the effect of a structural shock?
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Zero contemporaneous restrictions

▶ Solution Impose zero restrictions on the impact matrix B

▶ The b12 coefficient captures the contemporaneous effect of monetary policy on output growth
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b11 0
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

By assumption

▶ Implication We now have 3 structural parameters to estimate (instead of 4) and 3 restrictions
implied by Σu
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Zero contemporaneous restrictions
How to achieve identification?

▶ The system of equations implied by Σu = BB′ now becomes
�

σ2y σ2yr
− σ2r

�

=

�

b11 0
b21 b22

��

b11 b21
0 b22

�

▶ This yields






σ2y = b211
σ2yr = b11b21
σ2r = b221 + b222

▶ And can be easily solved to get:


















b11 = σy
b21 = σ2yr/σy

b22 =

√

√

√

σ2r −
�

σ2yr
�2

σ2y
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Zero contemporaneous restrictions
Impact effects

▶ We can now derive the impact effects of shocks by simply re-writing the structural VAR as

�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+







σy 0

σ2yr/σy

√

√

√

σ2r −
�

σ2yr
�2

σ2y







�

ϵDemandt
ϵMonPolt

�

▶ A one standard deviation shock to monetary policy (ϵMonPolt = 1) in t leads to










yt = 0

rt =

√

√

√

σ2r −
�

σ2yr
�2

σ2y

By assumption

▶ A one standard deviation shock to aggregate demand (ϵDemandt = 1) in t leads to
�

yt = σy
rt = σ2yr/σy
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Zero contemporaneous restrictions
Aka Cholesky identification

▶ This identification scheme is normally implemented via a Cholesky decomposition of Σu

▶ A Cholesky decomposition allows us to decompose Σu into the product of a lower triangular
matrix P times its transpose

Σu = PP′

▶ In matrix form we have
�

σ2y σ2yr
σ2yr σ2r

�

=

�

p11 0
p21 p22

��

p11 p21
0 p22

�

Lower Cholesky factor
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Cholesky decomposition of a matrix [Back to basics]

▶ The Cholesky decomposition is (roughly speaking) the square root of a matrix
✱ As for a square root, you can’t compute a Cholesky decomposition for a non positive-definite matrix

▶ A symmetric and positive-definite matrix A can be decomposed as:

A = PP′

where P is a lower triangular matrix (and therefore P′ is upper triangular)

▶ The formula for the decomposition of a 2× 2 matrix is

A =

�

a b
b c

�

P =





p
a 0
bp
a

r

c− b2
a




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Zero contemporaneous restrictions
Aka Cholesky identification

▶ To see why the zero contemporaneous restrictions identification can be implemented with a
Cholesky decomposition, first note that Σu is a positive semi-definite matrix

▶ Then we can use the Cholesky decomposition to write

Σu = PP′

▶ But remember that we assumed that B is also lower triangular (b12 = 0) and that

Σu = BB′

▶ As both P and B are lower triangular, it must follow that P = B
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Common Identification Schemes
Zero long-run restrictions
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Zero long-run restrictions

▶ Intuition Identification is achieved by assuming that some shocks have zero cumulative effect
on some of the endogenous variables in the long run

▶ References Blanchard and Quah (1989), Gali (1999)

▶ For example, assume that demand-side shocks have no long-run effect on the level of output,
while supply-side shocks do

▶ But how can we impose restrictions on the long-run cumulative effect of a structural shock?
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Zero long-run restrictions
How to compute the cumulative long-run effects of shocks?

▶ Re-write the VAR as
xt = Φxt−1 + Bϵt

▶ If a shock ϵt hits in t, its cumulative impact on xt in the long run is given by

xt,t+∞ = Bϵt +ΦBϵt +Φ
2Bϵt + ...+Φ

∞Bϵt
Impact in t

Impact in t+1
etc...

▶ Note: for output growth, yt,t+∞ is the effect of ϵt on the level of output
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Zero long-run restrictions
How to compute the cumulative long-run effects of shocks?

▶ Re-write the VAR as
xt = Φxt−1 + Bϵt

▶ If a shock ϵt hits in t, its cumulative impact on xt in the long run is given by

xt,t+∞ = Bϵt +ΦBϵt +Φ
2Bϵt + ...+Φ

∞Bϵt
Impact in t

Impact in t+1
etc...

▶ If the VAR is stable, we can rewrite

xt,t+∞ =
∞
∑

j=0
Φ
jBϵt = (I− Φ)

−1 Bϵt = Cϵt

where C ≡ (I− Φ)
−1 B captures the cumulative effect of ϵt on xt from t to ∞
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Zero long-run restrictions
How to compute the cumulative long-run effects of shocks?

▶ What is the intuition for C?

▶ Go back to our output growth / policy rate example. Now assume that the only two shocks
driving the economy are a supply and a demand shock:

�

yt,t+∞
rt,t+∞

�

=

�

c11 c12
c21 c22

�

�

ϵ
Supply
t

ϵDemandt

�

▶ Take the first equation: yt,t+∞ = c11ϵ
Supply
t + c12ϵ

Demand
t

✱ The coefficient c12 represents the impact of a demand shock (hitting in t) on the level of GDP in the
long-run

✱ If you believe in the no long-run effects from demand side shocks you would expect c12 = 0
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Zero long-run restrictions
How to achieve identification?

▶ Remember that C ≡ (I− Φ)
−1 B is unobserved as we don’t know B. So, how does this help with

the identification of B?

▶ To achieve identification define Ω ≡ CC′ and note that
1. Ω is known!

Ω =
�

(I− Φ)
−1�BB′
�

(I− Φ)
−1�′

=
�

(I− Φ)
−1�

Σu
�

(I− Φ)
−1�′

2. Ω is a positive-definite symmetric matrix→ It admits a unique Cholesky decomposition

Ω = PP′

3. Because of our assumption that C is lower triangular, it follows that P = C

▶ We achieved identification: B = (I− Φ)P
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Zero long-run restrictions
How to achieve identification?

▶ As before, we can rewrite the structural VAR with the B matrix implied by the zero long run
restriction

B = (I2 − Φ)P = (I2 − Φ)× chol
�

�

(I− Φ)
−1�

Σu
�

(I− Φ)
−1�′�

where chol denotes the Cholesky factor

▶ Note that the B matrix is not triangular
✱ This is different to what we had in the zero contemporaneous restrictions identification

▶ The impact effects are left unrestricted, the restrictions are on the C matrix
✱ We’ll check later that the restrictions is satisfied in a simple example with true data
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Common Identification Schemes
Sign restrictions
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Sign restrictions
▶ Intuition Exploit prior beliefs (typically informed by theoretical models) about the sign that

certain shocks should have on certain endogenous variables

▶ Intuition Faust (1998), Canova and Nicolo (2002), Uhlig (2005)

▶ For example
✱ Demand shocks should lead to an increase in output and interest rates

✱ Monetary policy shocks should lead to a fall in output and an increase in interest rates

Demand Monetary Policy
(ϵDemandt ) (ϵMonPolt )

Output growth (yt) + -
Short-rate Int. Rate (rt) + +

▶ But how can we impose restrictions on the signs of the effect of a structural shock?
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Sign restrictions
How to achieve identification?

▶ The key intuition is based on the following three steps
1. Consider a random orthonormal matrix Q such that

QQ′ = I2

2. Consider the lower triangular B matrix corresponding to the Cholesky factor of Σu

Σu = BB′ = PP′

3. The following equality holds
Σu = PP′ = PQQ′P′ = (PQ)

︸︷︷︸

B̃

(PQ)′
︸ ︷︷ ︸

B̃′

▶ The matrix B = PQ is a valid ‘candidate’ impact matrix that solves the identification problem!
✱ Differently from P, the matrix PQ is not lower triangular anymore

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 62



Sign restrictions
How to achieve identification?

▶ The key intuition is based on the following three steps
1. Consider a random orthonormal matrix Q such that

QQ′ = I2

2. Consider the lower triangular B matrix corresponding to the Cholesky factor of Σu

Σu = BB′ = PP′

3. The following equality holds
Σu = PP′ = PQQ′P′ = (PQ)

︸︷︷︸

B̃

(PQ)′
︸ ︷︷ ︸

B̃′

▶ The matrix B = PQ is a valid ‘candidate’ impact matrix that solves the identification problem!
✱ Differently from P, the matrix PQ is not lower triangular anymore

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 62



Sign restrictions
How to achieve identification?

▶ The key intuition is based on the following three steps
1. Consider a random orthonormal matrix Q such that

QQ′ = I2

2. Consider the lower triangular B matrix corresponding to the Cholesky factor of Σu

Σu = BB′ = PP′

3. The following equality holds
Σu = PP′ = PQQ′P′ = (PQ)

︸︷︷︸

B̃

(PQ)′
︸ ︷︷ ︸

B̃′

▶ The matrix B = PQ is a valid ‘candidate’ impact matrix that solves the identification problem!
✱ Differently from P, the matrix PQ is not lower triangular anymore

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 62



Sign restrictions
How to achieve identification?

▶ The key intuition is based on the following three steps
1. Consider a random orthonormal matrix Q such that

QQ′ = I2

2. Consider the lower triangular B matrix corresponding to the Cholesky factor of Σu

Σu = BB′ = PP′

3. The following equality holds
Σu = PP′ = PQQ′P′ = (PQ)

︸︷︷︸

B̃

(PQ)′
︸ ︷︷ ︸

B̃′

▶ The matrix B = PQ is a valid ‘candidate’ impact matrix that solves the identification problem!
✱ Differently from P, the matrix PQ is not lower triangular anymore

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 62



Orthonormal matrix [Back to basics]

▶ An orthonormal matrix Q is a real square matrix whose columns and rows are orthogonal unit
vectors

▶ What does it mean? Take for example two 2× 1 vectors q1 and q2, then the matrix Q = (q1,q2)
is orthonormal if

✱ The vectors have unit norm: ∥ qi ∥= 1

✱ The vectors are mutually orthogonal: qT1q2 = 0

▶ It follows that
QQ′ = I and Q′ = Q−1

▶ Note You can draw infinite matrices that satisfy the above conditions (we’ll see how to do it in
Matlab below)
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Sign restrictions
How to achieve identification?

▶ But Q is a random matrix... How can we check that B̃ = PQ represents a plausible solution?

▶ Solution Check that the effects of shocks implied by B̃ = PQ satisfy a set of a priori sign
restrictions. That is:

[1] Consider the structural representation of our VAR
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

b̃11 b̃12
b̃21 b̃22

�

�

ϵDemandt
ϵMonPolt

�

[2] Then check that the elements of B satisfy

Demand Monetary Policy
(ϵDemandt ) (ϵMonPolt )

Output growth (yt) b̃11 > 0? b̃12 < 0?
Short-rate Int. Rate (rt) b̃21 > 0? b̃22 > 0?
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Sign restriction in steps

▶ Perform N replications of the following steps
[1] Draw a random orthonormal matrix Q

[2] Compute B̃ = PQ where P is the Cholesky decomposition of the reduced form residuals Σu

[3] Compute the impact effects of shocks associated with B̃
[4] Are the sign restrictions satisfied?

[4.1] Yes. Store B̃ and go back to [1]

[4.2] No. Discard B̃ and go back to [1]

▶ All matrices in the set B̃(i) (for i = 1, 2, ...,N) represent admissible solutions to the
identification problem

▶ In this sense, sign restricted VARs are only set identified
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Common Identification Schemes
External Instruments (aka Proxy SVARs)
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External instruments

▶ Intuition Exploit information from a variable that is external to the VAR, but that is correlated
with a particular shock of interest and uncorrelated with other shocks (the instrument)

▶ References Stock and Watson (2012), Mertens and Ravn (2013)

▶ For example, assume that you have some ‘narrative’ series of policy surprises (i.e. that are not
just a response of the central bank to some development in the economy)

▶ But how can this help in finding the B matrix?
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External instruments

▶ Key element Presence of an instrument that is correlated with a shock of interest and
uncorrelated with all other shocks

▶ For example, assume that such an instrument exists (zt) and satisfies the following properties:

E[ϵDemandt z′t ] = 0,

E[ϵMonPolt z′t ] = c,

▶ Then, we can identify one column (in this example, the second one) of the B matrix:
�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

− b12
− b22

�

�

ϵDemandt
ϵMonPolt

�
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External instruments identification: How does it work?
▶ Recall that the reduced form residuals are a linear combination of the two structural shocks

¨

uyt = b11ϵ
Demand
t + b12ϵ

MonPol
t

urt = b21ϵ
Demand
t + b22ϵ

MonPol
t

▶ The OLS estimate of β in the following ‘first stage’ regression identifies b22 up to a scaling
factor

urt = βzt + ξt

▶ To see that, recall that the OLS β can be written as β = Cov(urt, zt)/Var(zt)
✱ Focus on the Cov term and plug in the definition of urt to get

Cov(urt, zt) = Cov(b21ϵ
Demand
t + b22ϵ

MonPol
t , zt) = b22Cov(ϵ

MonPol
t , zt) = b22c

✱ It follows that β =
b22c
Var(zt)

▶ As c is an unknown constant, b22 = βVar(zt)/c is only identified to a scaling factor
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External instruments identification: How does it work?

▶ The OLS estimate of γ in the following ‘second stage’ regression identifies the ratio b12/b22

uyt = γûrt + ζt = γ

� b22c
Var(zt)

�

zt + ζt

▶ To see that, and recalling again that γ = Cov(uyt, ûrt)/Var(ûrt)

✱ Focus on the Cov term and plug in the definition of uyt and ûrt to get

Cov(urt, ûrt) = Cov
�

b11ϵ
Demand
t + b12ϵ

MonPol
t ,

b22c
Var(zt)

zt

�

=
b12b22c

2

Var(zt)

✱ Then focus on the Var term to get

Var(ûrt) = Var
� b22c
Var(zt)

zt

�

=
b222c

2

Var
�

zt
�

✱ It follows that γ =
b12
b22
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External instruments: Partial identification

▶ In sum, we can normalize the effect of ϵMonPolt on rt to 1

b22 = 1

▶ And quantify the effect of ϵMonPolt on yt as

b12 = γ

▶ In other words, we have identified the column of the B matrix of the structural VAR
representation up to a scaling factor

�

yt
rt

�

=

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

− γ
− 1

�

�

ϵDemandt
ϵMonPolt

�

✱ Note It is actually possible to work out the true values of the second column of B (ftn 4 of Gertler
and Karadi (2015))
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Common Identification Schemes
Combining Sign Restrictions & External Instruments
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Combining Sign Restrictions & External Instruments

▶ Intuition Identifies one (or more) columns of B with external instruments and conditional on
that the remaining columns with sign restrictions

▶ References Cesa-Bianchi and Sokol (2021)

▶ For example, assume that there are two shocks that imply similar signs (so that sign
restrictions are not enough to identify the shocks), but you have an instrument for one of the
two shocks

▶ How can we find the B matrix?
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Combining Sign Restrictions & External Instruments

▶ Consider a k-variable version of our simple structural VAR(1)










x1t
x2t
...
xkt











=











ϕ11 ϕ12 · · · ϕ1k
ϕ21 ϕ22 · · · ϕ2k

...
...

. . .
...

ϕk1 ϕk2 · · · ϕkk





















x1t−1
x2t−1

...
xkt−1











+











b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...
bk1 bk2 · · · bkk





















ϵ1t
ϵ2t
...
ϵkt











▶ Assume that
✱ The first structural shock (ϵ1t) can be identified with an external instrument

✱ The remaining structural shocks (ϵ2t, ..., ϵkt) can be identified with sign restrictions
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Combining Sign Restrictions & External Instruments

▶ Partition the structural matrix B as [b B]

B =

















b11
b21
...
bk1
︸ ︷︷ ︸

b

b12 · · · b1k
b22 · · · b2k

...
. . .

...
bk2 · · · bkk
︸ ︷︷ ︸

B

















▶ Column vector b captures the impact of the first shock, matrix B captures the impact of the
remaining shocks

▶ We have seen above how to identify b with external instruments

▶ Question Once b is known, how can we find a B matrix that satisfies a set of sign restrictions?
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Combining Sign Restrictions & External Instruments
▶ Let C be the Cholesky decomposition of Σu. Find a normal vector q of dimension k× 1 that

rotates the first column of C into the vector b, so that

Cq = b

▶ Given q, build a (n× n− 1) matrix Q such that Q = [q Q] is orthonormal

[q Q][q Q]
′
= QQ′ = Ik

▶ As Q is an orthonormal matrix we have

Σu = CC′ = CQQ′C′ = (CQ) (CQ)′

▶ So B = CQ is a valid candidate matrix that solves the identification problem as
✱ Σu = (CQ) (CQ)′ holds
✱ The first column of CQ is b
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Combining Sign Restrictions & External Instruments: Steps

[1] Identify b, the first column of B = [b B], with the external instrument

[2] Compute the Cholesky decomposition C of the reduced form residuals’ covariance matrix Σu

[3] Find a normal vector q that rotates the first column of C into the vector b, namely Cq = b

[3.i] Given q, build the remaining k− 1 columns of an orthonormal matrix Q = [q Q]

[3.ii] The matrix CQ then represents a candidate identification scheme because:

(CQ)(CQ)′ = Σu and C[q Q] = [b B]

[3.iii] If B satisfies the sign restrictions, retain it. Otherwise, go back to [3.i]

[4] Go back to [1] and repeat N times
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A Simple Example
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The VAR Toolbox

▶ We’ll see in practice how VARs work through a set of examples using the VAR Toolbox

▶ The VAR Toolbox is a collection of Matlab routines to perform VAR analysis
✱ Codes are available at https://github.com/ambropo/VAR-Toolbox

✱ No installation is required. Simply clone the folder from Github and add the folder (with subfolders)
to your Matlab path

▶ We’ll start with a very simple example and then replicate the results from a few well-known
papers
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Adding the VAR Toolbox path to Matlab

▶ To avoid clashes with functions from other toolboxes, it is recommendable to add and remove
the Toolbox at beginning and end of your scripts

▶ If you download the toolbox to /User/VAR-Toolbox/, you can simply add the following
lines at the beginning and end of your script

addpath(genpath(’/User/VAR-Toolbox/v3dot0/’))
...

rmpath(genpath(’/User/VAR-Toolbox/v3dot0’))
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A simple bivariate VAR model

▶ Our first example will be a simple bivariate VAR as the one considered above

▶ US quarterly data from 1989:Q1 to 2019:Q4 on output growth (yt) and the 1-year T-bill (rt)

Real GDP Growth

1989 1994 1999 2004 2009 2014
-3

-2

-1

0

1

2
1-year Int. Rate

1989 1994 1999 2004 2009 2014
0

2

4

6

8

10
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A simple bivariate VAR model

▶ As both GDP growth an the 1-year rate are non-zero means, we fit the data with a VAR(1) with a
constant

�

yt
rt

�

=

�

αy
αr

�

+

�

ϕ11 ϕ12
ϕ21 ϕ22

��

yt−1
rt−1

�

+

�

uyt
urt

�

▶ This means we will estimate the following parameters
✱ 2+ 4 coefficients, namely the elements of α and Φ

✱ 2 variances of the reduced-form residuals, namely σ2y and σ2r

✱ 1 covariance of the reduced-form residuals, namely σ2yr

▶ We will store these coefficients in two Matlab matrices

F =

�

α1 ϕ11 ϕ12
α2 ϕ21 ϕ22

�

sigma =

�

σ2y σ2yr
σ2yr σ2r

�
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A simple bivariate VAR model

▶ In Matlab we store the data in the matrix X

X =









y1 r1
y2 r2
... ...
yT rT









=
�

y′t , r
′
t
�

= x′t

▶ The VAR can then be easily estimated with a few lines of code

% Set the deterministic variable in the VAR (1=constant, 2=trend)
det = 1;
% Set number of nlags
nlags = 1;
% Estimate VAR by OLS
[VAR, VARopt] = VARmodel(ENDO,nlags,det);
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A simple bivariate VAR model: VAR output

▶ The code estimates the VAR equation by equation with OLS, with results are stored in the VAR

and VARopt structures

▶ The six estimated parameters (i.e. α and Φ) can be printed at screen by simply typing
disp(VAR.F) to get
>> disp(VAR.F)
0.3630 0.3788 0.0041
-0.0729 0.2607 0.9541

▶ The companion matrix is disp(VAR.Fcomp)

>> disp(VAR.Fcomp)
0.3788 0.0041
0.2607 0.9541

▶ For the estimated reduced-form covariance matrix Σu type disp(VAR.sigma)

>> disp(VAR.sigma)
0.2891 0.0782
0.0782 0.1473
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OLS estimation: Typical VAR output (cont’d)

▶ The off-diagonal elements of Σ capture the average contemporaneous relation between the
endogenous variables

GDP growth (uy) 1-year T-Bill(ur)

GDP growth (uy) 0.2891 0.0782
1-year T-Bill (ur) 0.0782 0.1473

Cov(uy,ur)>0

▶ In our example output growth and interest rates are contemporaneously positively correlated
✱ It means that, on average, when GDP growth increases interest rates increases, too

▶ Does it mean that a shock to interest rates always increase output growth?
✱ No! Recall that reduced from residuals are not informative about structural shocks
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OLS estimation: Typical VAR output (cont’d)

▶ The off-diagonal elements of Σ capture the average contemporaneous relation between the
endogenous variables

GDP growth (uy) 1-year T-Bill(ur)

GDP growth (uy) 0.2891 0.0782
1-year T-Bill (ur) 0.0782 0.1473

Cov(uy,ur)>0

▶ In our example output growth and interest rates are contemporaneously positively correlated
✱ It means that, on average, when GDP growth increases interest rates increases, too

▶ Does it mean that a shock to interest rates always increase output growth?
✱ No! Recall that reduced from residuals are not informative about structural shocks

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 85



Model checking & tuning

▶ These notes do not cover this aspect in detail but...

▶ ... before interpreting the VAR results you should check a number of assumptions

▶ Loosely speaking, you need to check that the reduced-form residuals are
✱ Normally distributed

✱ Not autocorrelated

✱ Not heteroskedastic (i.e., have constant variance)

▶ ... and that the VAR is stable
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Stability and equilibrium

▶ We’ve already seen that a VAR is stable when
�

�eig(Φ)
�

� < 1
✱ If this condition is not met, the infinite sums in the Wold representation do not converge

▶ You can check the maximum value of Φ’s eigenvalues in the VAR structure, by typing
disp(VAR.maxEig) to get

>> disp(VAR.maxEig)
0.9559

▶ You can also check all of Φ’s eigenvalues by executing Matlab’s eig function on the VAR’s
companion matrix Fcomp (which, note, is built excluding the constant α from F )

▶ In practice:
>> disp(eig(VAR.Fcomp))
0.3769
0.9559
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Stability and equilibrium (cont’d)

▶ As our VAR is stable, its Wold representation will converge to the (finite) unconditional mean
of the data

▶ To see that, first consider the Wold representation in the presence of a constant

xt = Φ
tx0 +

t−1
∑

j=0
Φ
tα+

t−1
∑

j=0
Φ
jBϵt−j

▶ For t large enough and taking expectations we get

E
�

xt
�

=
t−1
∑

j=0
Φ
tα =
�

I2 − Φ
�−1

α

▶ In absence of shocks, the VAR’s variable will converge to its equilibrium
�

I2 − Φ
�−1

α at a rate
that depends on Φ
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Zero short-run restrictions

▶ Different identification schemes can be set by adjusting the structure VARopt.ident

▶ The mnemonic for recursive identification is VARopt.ident =’short’

▶ The VARir function implements the chosen identification and computes IR
% For zero contemporaneous restrictions set:
VARopt.ident = ’short’;
% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ Notes:
✱ The ordering of the variables matter!
✱ The second output of the VARir function is VAR again. This is because the VAR structure is

updated with the B matrix corresponding to the identification scheme chosen
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Zero short-run restrictions

▶ The B matrix can be printed at screen by executing disp(VAR.B) in the Matlab command
window:
>> disp(VAR.B)
0.5377 0
0.1454 0.3552

▶ So that we can now compute the impact impulse response to a monetary policy shock as:
�

yt
rt

�

=

�

b11 0
b21 b22

�

�

ϵDemandt
ϵMonPolt

�

=

�

0.5377 0

0.1454 0.3552

��

0

1

�

=

�

0

0.3552

�

▶ Which is also stored in IR(1,:,2) , namely the impact response of all variables, to the
second shock
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Zero long-run restrictions

▶ Then mnemonic for zero long-run restrictions is VARopt.ident =’long’

% For zero contemporaneous restrictions set:
VARopt.ident = ’long’;
% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ The B matrix implied by the zero long-run restrictions is stored in VAR.B

>> disp(VAR.B)
0.5368 -0.0309
0.1655 0.3462

▶ Recalling that C ≡ (I− Φ)
−1 B, the C matrix can be printed at screen by typing

>> disp((eye(2)-VAR.Fcomp)\VAR.B
0.9224 0.0000
8.8389 7.5367
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Sign restrictions

▶ Sign restrictions can be specified as follows
% Define sign restrictions : positive 1, negative -1, unrestricted 0
SIGN = [ 1, 1 ; % Real GDP

-1, 1]; % 1-year rate

▶ Differently from other identification schemes, it is not required to update the VARopt.ident

field

▶ The sign restrictions procedure is implemented with the SR.m function
% Implement sign restrictions identification with SR routine
SRout = SR(VAR,SIGN,VARopt);

▶ The structure SRout contains all relevant output from the sign restriction procedure

▶ Of particular interest is the matrix SRout.Ball , which includes all the accepted draws of Bj
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External instruments

▶ To implement the identification with external instruments, first add the time series of the
instrument to the VAR structure:
% Update VAR structure with external instrument

VAR.IV = iv;

▶ Then adjust the VARopt.ident structure with the mnemonic ’iv’ :

% Update the options in VARopt

VARopt.ident = ’iv’

▶ The actual implementation of the external instruments identification restrictions is via the
VARir.m function:
% Compute impulse responses
[IR, VAR] = VARir(VAR,VARopt);
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External instruments

▶ As before, the VARir.m function updates the VAR structure with a new VAR.B field
consistent with the chosen identification scheme

▶ Also updates the VAR structure with an additional structure including some information
about the first stage regression ( VAR.FirstStage )

▶ The B matrix implied by the zero long-run restrictions is stored in VAR.B

>> disp(VAR.B)
0.5375 0
0.1538 0

▶ Once the impact responses are obtained, the impulse responses at horizons h > 1 are then
computed as usual and stored in the matrix ( IR )
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Replications
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Examples of different identification schemes in the literature

▶ Zero short-run restrictions
✱ Stock and Watson (2001). “Vector Autoregressions,” Journal of Economic Perspectives

▶ Zero long-run restrictions
✱ Blanchard and Quah (1989). “The Dynamic Effects of Aggregate Demand and Supply Disturbances”,
American Economic Review

▶ Sign Restrictions
✱ Uhlig (2005) “What are the effects of monetary policy on output? Results from an agnostic

identification procedure,” Journal of Monetary Economics

▶ External instruments
✱ Gertler and Karadi (2015). “What are the effects of monetary policy on output? Results from an

agnostic identification procedure,” American Economic Journal: Macroeconomics
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Replications
Stock and Watson (2001, JEP)
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Stock and Watson (2001): Zero short-run restrictions

▶ Stock and Watson (2001). “Vector Autoregressions,” Journal of Economic Perspectives

▶ US quarterly data from 1960:Q1 to 2000:Q4
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Monetary policy shocks, inflation and unemployment

▶ Objective Infer the causal influence of monetary policy on unemployment and inflation

▶ VAR with p = 4 with inflation (πt), unemployment (ut), and the fed funds rate (rt)

▶ Key identifying assumptions
✱ MP (rt) reacts contemporaneously to movements in inflation and in unemployment

✱ MP shocks (ϵMonPolt ) do not affect inflation and unemployment within the quarter of the shock




πt
ut
rt



 =
4
∑

p=1
Φpxt−p +





b11 0 0
b21 b22 0
b31 b32 b33









ϵ1t
ϵ2t

ϵMonPolt




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Replicating Stock and Watson (2001) with the VAR Toolbox
▶ In Matlab, set lag length to 4 and estimate a VAR with a constant

% Set up and estimate VAR
det = 1;
nlags = 4;
[VAR, VARopt] = VARmodel(X,nlags,det);

▶ Then set the option for recursive identification VARopt.ident =’short’ and compute the IR
with the VARir function.

✱ Note that the ordering of the variables matter!

% For zero contemporaneous restrictions set:
VARopt.ident = ’short’;
% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ Note that the second output of the VARir function is VAR again
✱ This is because the VAR structure is updated with the B matrix corresponding to the identification

scheme chosen
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Replicating Stock and Watson (2001) with the VAR Toolbox (cont’d)

▶ The VARirband function allows to compute confidence intervals

% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ You can control the options of the bootstrap procedure by modifying the VARopt structure
(before running VARir )

▶ For example

% Some options for the bootstrap
VARopt.ndraws = 1000; % Number of draws
VARopt.pctg = 95; % Level for confidence intervals

VARopt.method = ’bs’; % ’bs’ sampling with replacement; ’wild’ wild bootstrap
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The effect of a monetary policy shock

▶ Monetary policy shock raises inflation in the short run (price puzzle) and increases
unemployment
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The other two shocks are identified by definition... but how can we
interpret them?

▶ How about ϵ1t and ϵ2t ?
✱ The shock ϵ1t affects all variables contemporaneously

✱ The shock ϵ2t affects rt contemporaneously but not πt

▶ Can we interpret these shocks? Are the assumptions consistent with any theoretical
mechanism?

▶ Some shocks may be better identified than others
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The other two shocks are identified by definition... but how can we
interpret them?

▶ Shock to ϵ1t behaves as a negative aggregate supply shock
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The other two shocks are identified by definition... but how can we
interpret them?

▶ Shock to ϵ2t behaves as a negative aggregate demand shock
Inflation to 02

5 10 15 20
-0.6

-0.4

-0.2

0

0.2
Unemployment to 02

5 10 15 20
-0.4

-0.2

0

0.2

0.4

Fed Funds to 02

5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 105



Forecast error variance & Historical decompositions
▶ The variance decomposition (VD) can be computed with the VARvd function

✱ The matrix VD is a H horizon, k shocks, k variables matrix

% Compute VD
[VD, VAR] = VARvd(VAR,VARopt);

▶ Similarly, the historical decomposition (HD) can be computed with the VARhd function

% Compute HD
[HD, VAR] = VARhd(VAR,VARopt);

▶ Differently from VD , the output of VARhd is a structure ( HD )
>> disp(HD)
shock: [164x3x3 double]
init: [164x3 double]
const: [164x3 double]
trend: [164x3 double]
trend2: [164x3 double]
exo: [164x3x0 double]
endo: [164x3 double]
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Forecast error variance decomposition
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Historical decomposition
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Historical decomposition

Unemployment
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Historical decomposition
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Replications
Blanchard and Quah (1989, AER)
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Blanchard and Quah (1989): Zero long-run restrictions

▶ Blanchard and Quah (1989). “The Dynamic Effects of Aggregate Demand and Supply
Disturbances”, American Economic Review

▶ US quarterly data from 1948:Q1 to 1987:Q4
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What is the effect of demand and supply shocks?

▶ Objective Identify the effects of demand and supply shocks on output and unemployment

▶ Bivariate VAR with p = 8 with output growth (yt) and unemployment (ut)

▶ Key identifying assumption Demand-side shocks have no long-run effect on the level of
output, while supply-side shocks do

▶ Blanchard and Quah impose zero long-run restrictions on the cumulative effect of demand
shocks on output growth (i.e. on output level) to identify the shocks

�

yt,t+∞
ut,t+∞

�

=

�

c11 0
c21 c22

�

�

ϵ
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t

ϵDemandt

�

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 113



What is the effect of demand and supply shocks?

▶ Objective Identify the effects of demand and supply shocks on output and unemployment

▶ Bivariate VAR with p = 8 with output growth (yt) and unemployment (ut)

▶ Key identifying assumption Demand-side shocks have no long-run effect on the level of
output, while supply-side shocks do

▶ Blanchard and Quah impose zero long-run restrictions on the cumulative effect of demand
shocks on output growth (i.e. on output level) to identify the shocks

�

yt,t+∞
ut,t+∞

�

=

�

c11 0
c21 c22

�

�

ϵ
Supply
t

ϵDemandt

�

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 113



Monetary policy shocks, inflation and unemployment

▶ In Matlab, set lag length to 8 and estimate a VAR with a constant
% Set up and estimate VAR
det = 1;
nlags = 8;
[VAR, VARopt] = VARmodel(X,nlags,det);

▶ Then set the option for zero long-run restrictions VARopt.ident =’long’ and compute the
IR with the VARir function.

✱ Note that the ordering of the variables matter!

% For zero contemporaneous restrictions set:
VARopt.ident = ’long’;
% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ The B matrix implied by the zero long-run restrictions is stored in VAR.B
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Aggregate supply shock

▶ Aggregate supply shock initially increases unemployment (puzzle of hours to productivity
shocks)
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Aggregate demand shock

▶ Aggregate demand shocks have a hump-shaped effect on output and unemployment
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What is the long run effect of demand and supply shocks on output
level?

▶ Blanchard and Quah report (Figure 1) the cumulative sum of the impulse responses of output
growth (i.e. the response of output level)

▶ By assumption, it should be zero for demand shocks

✔
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Replications
Uhlig (2005, JME)
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Uhlig (2005, JME): Sign restrictions

▶ Uhlig (2005). “What are the effects
of monetary policy on output?
Results from an agnostic
identification procedure,” Journal
of Monetary Economics

▶ US monthly data from 1965:M1 to
2003:M12
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What are the effects of monetary policy on output?

▶ Objective Infer the causal effect of monetary policy on real GDP

▶ VAR with p = 12 with real GDP, real GDP deflator, a commodity price index, total reserves,
non-borrowed reserves, and the fed. funds rate

▶ Key identifying assumptions According to conventional wisdom, monetary contractions should
✱ Raise the federal funds rate
✱ Lower prices
✱ Decrease non-borrowed reserves

▶ Real GDP is left unrestricted
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Monetary policy shock: The sign restrictions

▶ Uhlig imposes the following sign restrictions on the impulse responses of the VAR

Monetary Policy Shock

Real GDP ?
Real GDP deflator < 0
Commodity price index ?
Total reserves ?
Non-borrowed reserves < 0
Fed. Funds Rate > 0

▶ Restrictions are imposed for 6 periods
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Monetary policy shock: The sign restrictions
▶ In Matlab, the sign restrictions can be set as follows

% Define the shock names
VARopt.snames = {’Mon. Policy Shock’};
% Define sign restrictions : positive 1, negative -1, unrestricted 0
SIGN = [ 0,0,0,0,0,0; % Real GDP

-1,0,0,0,0,0; % Deflator
-1,0,0,0,0,0; % Commodity Price
0,0,0,0,0,0; % Total Reserves

-1,0,0,0,0,0; % NonBorr. Reserves
1,0,0,0,0,0]; % Fed Funds

% Define the number of steps the restrictions are imposed for:
VARopt.sr_hor = 6;

▶ The sign restriction routine routine is then implemented with the SR function

% Function SR performs the sign restrictions identification and computes
% IRs, VDs, and HDs. All the results are stored in SRout
SRout = SR(VAR,SIGN,VARopt);
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What happens when you do sign restrictions

▶ Start drawing orthonormal matrices Q until you find one that satisfies the restrictions...
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What happens when you do sign restrictions

▶ Keep on drawing Qs again until you find another one...
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What happens when you do sign restrictions

▶ After a while...
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What are the effects of monetary policy on output?

▶ Ambiguous effect on real GDP =⇒ Long-run monetary neutrality
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Replications
Gertler and Karadi (2015, AEJ:M)
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Gertler and Karadi (2015, AEJ:M): External instruments

▶ Gertler and Karadi (2015).
“Monetary Policy Surprises, Credit
Costs, and Economic Activity,”
American Economic Journal:
Macroeconomics

▶ US monthly data from 1979:M7 to
2012:M6
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What are the effects of monetary policy on output?

▶ Objective Infer the causal influence of monetary policy on real GDP

▶ Assume a VAR with p = 12 with industrial production, the consumer price index, the 1-year
T-bill interest rate, and the Excess Bond Premium

▶ Key identifying assumptions There exists an external instrument (zt) such that

E
�

ϵitz
′
t

�

= 0 for i ̸= MonPol

E[ϵMonPolt z′t ] = c

▶ That is: zt is correlated with the monetary policy shock and uncorrelated with all other
structural shocks in the system
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The instrument (zt): High frequency monetary policy surprises

▶ Ingredients
✱ Intra-daily data (τ denotes minutes)

✱ A monetary policy announcement on day t at time τ (e.g., FOMC decision)

✱ A policy indicator r (e.g., fed funds target)

✱ Price of futures contract on r for j days ahead Pjt,τ = 100− Et,τ
�

rj
�

▶ Monetary policy surprise

sjt,τ = −(Pjt,τ+20 − P
j
t,τ−10) = Et,τ+20

�

rj
�

− Et,τ−10
�

rj
�

▶ Intuition Only monetary policy shocks affect the futures prices in this short 30-minute window
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✱ A monetary policy announcement on day t at time τ (e.g., FOMC decision)

✱ A policy indicator r (e.g., fed funds target)

✱ Price of futures contract on r for j days ahead Pjt,τ = 100− Et,τ
�

rj
�

▶ Monetary policy surprise

sjt,τ = −(Pjt,τ+20 − P
j
t,τ−10) = Et,τ+20

�

rj
�

− Et,τ−10
�

rj
�

▶ Intuition Only monetary policy shocks affect the futures prices in this short 30-minute window
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External instruments identification with the VAR Toolbox

▶ In Matlab, first add the instrument to the VAR structure
% Identification is achieved with the external instrument, which needs
% to be added to the VAR structure
VAR.IV = IV;

▶ Then update the options for identification and for computation of error bands
% Update the options in VARopt to be used in IR calculations and plots
VARopt.ident = ’iv’;
VARopt.method = ’wild’;

▶ Finally, compute the IR with the VARir function
✱ The code instruments the residual of the first equation, so the ordering of the variables matter!

% Compute IR
[IR, VAR] = VARir(VAR,VARopt);

▶ The b matrix implied by the external instrument is stored in VAR.b and additional info on the
first stage is stored in VAR.FirstStage
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Impulse response functions: Impact effect

▶ The impact effect (i.e. the b matrix) is given by the first and second stage regressions
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Impulse response functions: Dynamic effect

▶ The dynamic effect is computed as usual with the Φ matrix

1yr T-Bill to 0MonPol

10 20 30 40 50 60
-0.2

-0.1

0

0.1

0.2

0.3
Consumer Price Index to 0MonPol

10 20 30 40 50 60

-2

-1

0

1
#10 -3

Industrial Production to 0MonPol

10 20 30 40 50 60
-8

-6

-4

-2

0

2
#10 -3 Excess Bond Premium to 0MonPol

10 20 30 40 50 60
-0.05

0

0.05

0.1

0.15

Introduction (S)VAR basics Structural Dynamic Analysis Identification problem Identification Schemes Example Replications # 133



Appendix

References References # 134



References I

Blanchard, O. J. and D. Quah (1989): “The Dynamic Effects of Aggregate Demand and Supply Disturbances,” American Economic Review, 79,
655–73.

Canova, F. and G. D. Nicolo (2002): “Monetary disturbances matter for business fluctuations in the G-7,” Journal of Monetary Economics, 49,
1131–1159.

Cesa-Bianchi, A. and A. Sokol (2021): “Financial shocks, credit spreads, and the international credit channel,” Journal of International
Economics, 1035–43.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999): “Monetary policy shocks: What have we learned and to what end?” in Handbook of
Macroeconomics, ed. by J. B. Taylor and M. Woodford, Elsevier, vol. 1 of Handbook of Macroeconomics, chap. 2, 65–148.

Faust, J. (1998): “The robustness of identified VAR conclusions about money,” International Finance Discussion Papers 610, Board of Governors
of the Federal Reserve System (U.S.).

Gali, J. (1999): “Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?” American Economic
Review, 89, 249–271.

Gertler, M. and P. Karadi (2015): “Monetary Policy Surprises, Credit Costs, and Economic Activity,” American Economic Journal:
Macroeconomics, 7, 44–76.

Mertens, K. and M. O. Ravn (2013): “The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States,” American
Economic Review, 103, 1212–47.

Sims, C. A. (1980): “Macroeconomics and Reality,” Econometrica, 48, 1–48.
Stock, J. and M. Watson (2012): “Disentangling the Channels of the 2007-2009 Recession,” Brookings Papers on Economic Activity, Spring,

81–135.
Stock, J. H. and M. W. Watson (2001): “Vector Autoregressions,” Journal of Economic Perspectives, 15, 101–115.
Uhlig, H. (2005): “What are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure,” Journal of Monetary

Economics, 52, 381–419.
References References # 135


	Introduction
	(S)VAR basics
	Structural Dynamic Analysis
	Impulse Responses
	Forecast Error Variance Decomposition
	Historical Decompositions

	Identification problem
	Identification Schemes
	Zero short-run restrictions
	Zero long-run restrictions
	Sign restrictions
	External instruments
	Combining Sign restrictions & External instrument

	Example
	Replications
	Stock and Watson (2001, JEP)
	Blanchard and Quah (1989, AER)
	Uhlig (2005, JME)
	Gertler and Karadi (2015)

	Appendix
	References
	References


