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LATEX工作室 1 CIRCULAR MOTION

第 1章 CHAPTER 1
Circular Motion

1.1 Angular quantities

Angular quantities

movement or rotation of an object along a circular path is called circular motion

to describe a circular motion, we can use angular quantities, which turn out to be more useful than linear displace-

ment , linear velocity , etc.

1.1.1 angular displacement

angular displacement

angular displacement is angle swiped out by object moving along circular

知识点解读

r
θ

s

â unit: [θ] = rad (natural unit of measurement for angles)

conversion rule: 2π rad= 360◦

â if two radii form an angle of θ, then length of arc: s = rθ

two radii subtending an arc of same length as radius form an angle of one

radian

angular displacement is angle swiped out by object moving along circular

1.1.2 angular velocity

知识概念

angular velocity describes how fast an object moves along a circular path

重要概念

angular velocity is defined as angular displacement swiped out per unit time: ω= ∆θ

∆t

â unit of: [ω] = rad s−1, also in radian measures

â angular velocity is a vector quantity

this vector points in a direction normal to the plane of circular motion

but in A-level course, we treat angular velocity as if it is a scalar

angular velocity and angular speed may be considered to be the same idea

定理与公式推导

n interval ∆t , distance moved along arc

∆s = v∆t = r∆θ ⇒ ω= ∆θ

∆t
= v

r
⇒ v =ωr

this relation between linear speed and angular speed holds at any instant

1
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LATEX工作室 1 CIRCULAR MOTION

The vector points in the direction perpendicular to the circular motion plane, but in the A-level course, we treat

the angular velocity as a scalar , That is, when we consider angular velocity, we regard it and linear velocity as the

same physical quantity to describe the most circular motion of an object.

For the constant relationship between linear velocity and angular velocity, we can use linear velocity to describe

the angular velocity, and conversely, we can use angular velocity to describe linear velocity.

1.1.3 Uniform circular motion

定义与概念

when studying linear motion, we started from motion with constant velocity v

consider the simplest possible circular motion −→ circular motion with constant ω

思考与训练

v

v

v

analogy with linear motion with constant v

uniform linear motion: s = v t

displacement s ↔ θ, velocity v ↔ω

for uniform circular motion, one has: θ =ωt

â time taken for one complete revolution is called period T

in one T , angle swiped is 2π, so ω= 2π

T
â uniform circular motion is still accelerated motion

speed is unchanged, but velocity is changing

direction of velocity always tangential to its path, so direction of velocity

keeps changing

in general, any object moving along circular path is accelerating.

- ω= 2π

T
= 2π

40
≈ 0.157 rad s−1 v =ωr = 0.157×2.5 ≈ 0.39 m s−1 ä

练习 1 What is the angular velocity of the minute hand of a clock?

练习 2 A spacecraft moves around the earth in a circular orbit. The spacecraft has a speed of 7200 m s−1 at a

height of 1300 km above the surface of the earth. Given that the radius of the earth is 6400 km. (a) What

is the angular speed of this spacecraft? (b) What is its period?

1.1.4 centripetal acceleration

知识归纳与探究

centripetal acceleration is the acceleration due to the change in direction of velocity vector, it points toward

the centre of circular path

consider motion along a circular path from A to B with constant speed v

under small (infinitesimal) duration of time ∆ta

aA more rigorous derivation can be given by using differentiation techniques

change in velocity: ∆v = 2v sin
∆θ

2
≈ v∆θ (as ∆θ→ 0, sin∆θ ≈∆θ)

acceleration: a = ∆v

∆t
≈ v

∆θ

∆t
= vω (as ω= ∆θ

∆t
)

consider motion along a circular path from A to B with constant speed v

2
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LATEX工作室 1 CIRCULAR MOTION

思考与解答

v
v

BA

∆θ

v

v
∆v

∆θ

recall relation v = ωr , we

find centripetal acceleration:

ac = v2

r
=ω2r

â direction of centripetal accel-

eration: always towards centre

of circular path

â centripetal acceleration is

only responsible for the change

in direction of velocity

change in magnitude of velocity

will give rise to tangential accel-

eration

this is related to angular acceleration[1] , which is beyond the syllabus

【练习与思考】

A racing car makes a 180◦ turn in 2.0 s. Assume the path is a semi-circle with a radius of 30 m and the car

maintains a constant speed during the turn. (a) What is the angular velocity of the car? (b) What is the

centripetal acceleration?

1.2 centripetal force

circular motion must involve change in velocity, so object is not in equilibrium

there must be a net force on an object performing circular motion

课前预习与思考

centripetal force (Fc ) is the resultant force acting on an object

â moving along a circular path, and it is always directed towards centre of the circle

â centripetal force causes centripetal acceleration

using Newton’s 2nd law: Fc = m
v2

r
= mω2r

Fc is not a new force by nature, it can have a variety of origins

Fc is a resultant of forces you learned before (weight, tension, contact force, friction, etc.)

Fc acts at right angle to direction of velocity

or equivalently, if Fnet ⊥ v and Fnet is of constant magnitude

then this net force provides centripetal force for circular motion

练习 3

star

planet

v

gravity

â effect of Fc : change direction of motion, or maintain circular

orbits

to change magnitude of velocity, there requires a tangential com-

ponent for the net force

[1]Angular acceleration is analogous to linear acceleration α, defined as rate of change of angular velocity: α = dω

dt
= d2θ

dt 2
(⋆).

Similar to v =ωr = ds

dt
, the relation a =αr = dv

dt
also holds.
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LATEX工作室 1 CIRCULAR MOTION

练习 4 again the idea of tangential force is beyond the syllabus

planet orbiting around a star

gravity by the star provides centripetal force for the planet

A rock is able to orbit around the earth near the earth’s surface. Let’s ignore air resistance for this

question, so the rock is acted by weight only. Given that radius of the earth R = 6400 km.

(a) What is the orbital speed of the rock? (b) What is the orbital period?

- weight of object provides centripetal force: mg = mv2

R
orbital speed: v =√

g R =
√

9.81×6.4×106 ≈ 7.9×103 m s−1

period: T = 2πR

v
= 2π×6.4×106

7.9×103 ≈ 5.1×103 s≈ 85 min ä

解题思路分析： A turntable can rotate freely about a vertical axis through its centre. A small object is placed

on the turntable at distance d = 40 cm from the centre. The turntable is then set to rotate, and the angular speed

of rotation is slowly increased. The coefficient of friction between the object and the turntable is µ = 0.30. If

the object does not slide off the turntable, find the maximum number of revolutions per minute.

- if object stays on turntable, friction provides the centripetal force required: f = mω2d

increasing ω requires greater friction to provide centripetal force

but maximum limiting friction possible is: flim =µN =µmg , therefore

f ≤ flim ⇒ mω2d ≤µmg ⇒ ω2 ≤ µg

d
⇒ ωmax =

√
0.30×9.81

0.40
≈ 2.71 rad s−1

period of revolution: Tmin = 2π

ωmax
= 2π

2.71
≈ 2.32 s

umber of revolutions in one minute: nmax = t

Tmin
= 60

2.32
≈ 25.9

【解答与反思】

O

B

A

TB

mg

mg
TA

P
ω

Particle P of mass m = 0.40 kg is attached to one end of a light inextensible

string of length r = 0.80 m. The particle is whirled at a constant angular speed

ω in a vertical plane. (a) Given that the string never becomes slack, find the

minimum value of ω. (b) Given instead that the string will break if the tension

is greater than 20 N, find the maximum value of ω.

- at top of circle (point A): Fc = TA +mg = mω2r ⇒ TA = mω2r −mg

at bottom of circle (point B): Fc = TB −mg = mω2r ⇒ TB = mω2r +mg

tension is minimum at A, but string being taut requires T ≥ 0 at any point, so

TA ≥ 0

mω2r −mg ≥ 0 ⇒ ω2 ≥ g

r

ωmin =
√

g

r
=

√
9.81

0.80
≈ 3.5 rad s−1

tension is maximum at B , but string does not break requires T ≤ Tmax, so TB ≤ Tmax

mω2r +mg ≤ Tmax ⇒ ω2 ≤ Tmax

m
− g

r

ωmax =
√

Tmax

m
− g

r
=

√
20

0.40
− 9.81

0.80
≈ 6.1 rad s−1 ä

ball

mg

T

Fnet

θ

- vertical component of tension Ty equals weight

Ty = mg ⇒ T cosθ = mg

T = mg

cosθ
= 0.12×9.81

cos25◦
≈ 1.3 N

net force equals horizontal component of tension Tx
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LATEX工作室 1 CIRCULAR MOTION

so component Tx provides centripetal force

Fc = Tx ⇒ T sinθ = mv2

r
by eliminating T and m, one can find

v2 = r tanθ

g
= 0.10× tan25◦

9.81
⇒ v ≈ 0.069 m s−1 ä

When the ball reaches lowest point, find its speed and the tension in the string in terms of m and l .

思考与练习

mr

T

mg

- energy conservation: G.P.E. loss = K.E. gain

mg r = 1

2
mv2 ⇒ v =√

2g r

at lowest point: Fc = T −mg = m
v2

r

T = mg +m
v2

r
= mg +m

2g r

r
= 3mg ä

Question 1.1 Suggest what provides centripetal force in the following

cases. (a) An athlete running on a curved track. (b) An aeroplane bank-

ing at a constant altitude. (c) A satellite moving around the earth.

Question 1.2 A turntable that can rotate freely in a horizontal plane is covered by dry mud. When the angular speed

of rotation is gradually increased, state and explain whether the mud near edge of the plate or near the mud will first

leave the plate?

Question 1.3 A bucket of water is swung at a constant speed and the motion describes a circle of radius r = 1.0m in

the vertical plane. If the water does not pour down from the bucket even when it is at the highest position, how fast

do you need to swing the bucket?

练习 （题 1）. Question

TP

This question is about the design of a roller-coaster. We

consider a slider that starts from rest from a point P and

slides along a frictionless circular track as sketched below.

P is at the same height as the top of the track T . (a) Show

that the slider cannot get to T . (b) As a designer for a

roller-coaster, you have to make sure the slider can reach

point T and continue to slide along the track, what is the

minimum height for the point of release?

Question 1.4 A turntable that can rotate freely in a horizontal plane is covered by dry mud. When the angular speed

of rotation is gradually increased, state and explain whether the mud near edge of the plate or near the mud will first

leave the plate?

Question 1.5 A bucket of water is swung at a constant speed and the motion describes a circle of radius r = 1.0m in

the vertical plane. If the water does not pour down from the bucket even when it is at the highest position, how fast

do you need to swing the bucket?

【知识点衔接】

Newton’s law of gravitation states that gravitational force between two point masses is proportional to the

product of their masses and inversely proportional to the square of their distance
(
Fgrav ∝ Mm

r 2

)

this law was formulated in Issac Newton’s work ‘The Principia’, or ‘Mathematical Principles of Natural Philoso-

phy’, first published in 1687

5
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LATEX工作室 2 GRAVITATIONAL FIELDS

第 2章 CHAPTER 2
Gravitational Fields

2.1 gravitational forces

2.1.1 Newton’s law of gravitation

any object attracts any other object through the gravitational force

M

m

r

Fgrav

Fgrav

gravitational attraction between M and m

Newton’s law of gravitation states that gravitational force between two point masses is proportional to the

product of their masses and inversely proportional to the square of their distance
(
Fgrav ∝ Mm

r 2

)

this law was formulated in Issac Newton’s work ‘The Principia’, or ‘Mathematical Principles of Natural Philoso-

phy’, first published in 1687

mathematically, gravitational force takes the form: Fgrav = GMm

r 2

G = 6.67×10−11 N m2 kg−2 is the gravitational constant

â gravitational force is always attractive

â gravity is universal, i.e., gravitational attraction acts between any two masses

â Newton’s law of gravitation refers to point masses

i.e., particles with no size, therefore distance r can be easily defined

M
m

r

â a sphere with uniform mass distribution (e.g., stars, planets) can be treated

as a point model

distance r is taken between centres of the spheres [2]

(see Example 2.8, field lines around a planet seem to point towards centre

of planet)

Example 2.1 The Earth can be thought as a uniform sphere of radius R = 6.4×
106 m and mass M = 6.0×1024 kg. Estimate the gravitational force on a man of 60 kg at sea level.

- F = GMm

R2 = 6.67×10−11 ×6.0×1024 ×60

(6.4×106)2 ≈ 586 N ä
Question 2.1 Estimate the gravitational force between you and your deskmate.

[2]This is known as shell theorem: a spherically symmetric shell (i.e., a hollow ball) affects external objects gravitationally as

though all of its mass were concentrated at its centre, and it exerts no net gravitational force on any object inside, regardless of the

object’s location within the shell. (⋆)
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LATEX工作室 2 GRAVITATIONAL FIELDS

2.1.2 planetary motion

M

m

Fgrav

a planet/satellite orbiting around a star/earth

a planet/satellite can move around a star/earth in circular orbit

circular motion requires centripetal force

for these objects, gravitational force provides centripetal force

Fgrav = Fc ⇒ GMm

r 2 = mv2

r
or

GMm

r 2 = mω2r

Example 2.2 GPS (Global Positioning System) satellites move in a circular orbits at about 20000 km above the earth’s

surface. The Earth has a radius R = 6.4×106 m and mass M = 6.0×1024 kg. (a) Find the speed of GPS satellites. (b)

Find its orbital period.

- GMm

r 2 = mv2

r
⇒ v =

√
GM

r
=

√
6.67×10−11 ×6.0×1024

6.4×106 +2.0×107 ≈ 3.9×103 m s−1

v = 2πr

T
⇒ T = 2πr

v
= 2π× (6.4×106 +2.0×107)

3.9×103 ≈ 4.3×104 s≈ 11.8 hours ä
Example 2.3 A geostationary satellite moves in a circular orbit that appears motionless to ground observers. The

satellite follows the Earth’s rotation, so the satellite rotates from west to east above equator with an orbital period of

24 hours. Find the radius of this orbit.

-
GMm

r 2 = mω2r ⇒ GMm

r 2 = m

(
2π

T

)2

r ⇒ r 3 = GMT 2

4π2

r =
(

GMT 2

4π2

)1/3

=
(

6.67×10−11 ×6.0×1024 × (24×3600)2

4π2

)1/3

≈ 4.23×107 m ä
Example 2.4 Assuming the planets in the solar system all move around the sun in circular orbits, show that the

square of orbital period is proportional to the cube of orbital radius. [3]

-
GMm

r 2 = mω2r ⇒ GMm

r 2 = m

(
2π

T

)2

r ⇒ T 2 = 4π2

GM
· r 3

G is gravitational constant, M is mass of the sun, so
4π2

GM
is a constant, so T 2 ∝ r 3 ä

Question 2.2 Given that it takes about 8.0 minutes for light to travel from the sun to the earth. (a) What is the mass

of the sun? (b) At what speed does the earth move around the sun?

2.1.3 apparent weight

an object’s actual weight is the gravitational attraction exerted by the earth’s gravity

an object’s apparent weight is the upward force (e.g., normal contact force exerted by ground, tension in a spring

balance, etc.) that opposes gravity and prevents the object from falling

apparent weight can be different from actual weight due to vertical acceleration or buoyancy

but if we consider rotation of the earth, this also causes apparent weight to be lessened

[3]This is known as Kepler’s 3rd law for planetary motions. In the early 17th century, German astronomer Johannes Kepler

discovered three scientific laws which describes how planets move around the sun. This T 2 ∝ r 3 relation not only holds for

circular orbits but are also correct for elliptical orbits.

Isaac Newton proved that Kepler’s laws are consequences of his own law of universal gravitation, and therefore explained why

the planets move in this way. (⋆)
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LATEX工作室 2 GRAVITATIONAL FIELDS

O Fgrav NeqFc,eq

Fgrav

Fc,P

NP

Fgrav

Npole

apparent weight at various positions near earth’s surface (not to scale)

object resting on ground is actually rotating together with earth

resultant of gravitational force and contact force should provide centripetal force

for object on equator: Fc,eq = mω2R ⇒ Fgrav −Neq = mω2R ⇒ Neq = GMm

R2 −mω2R

for object at poles: Fc,pole = 0 ⇒ Fgrav −Npole = 0 ⇒ Npole =
GMm

R2

at lower latitudes, object describe larger circles, hence requires greater centripetal force

this offsets the balancing normal force, so apparent weight decreases near the equator

Example 2.5 A stone of mass 5.0 kg is hung from a newton-meter near the equator. The Earth can be considered

to be a uniform sphere of radius R = 6370 km and mass M = 5.97×1024 kg. (a) What is the gravitational force on the

stone? (b) What is the reading on the meter?

- gravitational force: Fgrav = GMm

R2 = 6.67×10−11 ×5.97×1024 ×5.0

(6.37×106)2 ≈ 49.07 N

centripetal force required: Fc = mω2R = m

(
2π

T

)2

R = 5.0× 4π2

(24×3600)2 ×6.37×106 ≈ 0.17 N

apparent weight, or reading on meter: N = Fgrav −Fc = 49.07−0.17 ≈ 48.90 N ä
Question 2.3 Why astronauts in space stations are said to be weightless?

Question 2.4 How do you find the apparent weight of an object at an arbitrary latitude P? Does the apparent weight

act vertically downwards? Give your reasons.

2.2 gravitational fields

to explain how objects exert gravitational attraction upon one another at a distance, we introduce the concept of

force fields

gravitational field is a region of space where a mass is acted by a force

any mass M (or several masses) can produce a gravitational field around it

a test mass m within this field will experience a gravitational force

to describe the effect on a small mass m in the field, we will further introduce

- gravitational field strength, to help us compute gravitational force on objects

8
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LATEX工作室 2 GRAVITATIONAL FIELDS

- gravitational potential, to help us compute gravitational potential energy between objects

2.3 gravitational field strength

2.3.1 gravitational field strength

gravitational field strength is defined as gravitational force per unit mass: g = Fgrav

m

â unit of g : [g ] =N kg−1 = m s−2, same unit as acceleration

â field strength due to an isolated source of mass M

at distance r from the source, a test mass m is acted by a force: Fgrav = GMm

r 2

field strength at this position: g = Fgrav

m
= ⇒ g = GM

r 2

note that the field is produced by the source M , so field strength g depends on M , not m

â field strength g is a vector quantity, it has a direction

gravitation is attractive, so g points towards source mass

to compute combined field strength due to several sources, should perform vector sum of contributions from each

individual

Example 2.6 Star A of mass 6.0×1030 kg and star B of mass 1.5×1030 kg are separated by a distance of 2.0×1012 m.

(a) What is the field strength at the mid-point P of the two stars? (b) If a comet of mass 4.0×106 kg is at the mid-point,

what force does it experience?

A B

d

g A gBP

- g A acts towards A, gB acts towards B , they are in opposite directions

gP = g A − gB = GMA

r 2
A

− GMB

r 2
B

= 6.67×10−11 ×
[

6.0×1030

(1.0×1012)2 − 1.5×1030

(1.0×1012)2

]
≈ 3.0×10−4 N kg−1

force on comet: F = mg = 4.0×106 ×3.0×10−4 ≈ 1.2×103 N ä

2.3.2 acceleration of free fall

if field strength g is known, gravitational force on an object of mass m is: Fgrav = mg

if the object is acted by gravity only, then Fnet = Fgrav ⇒ ma = mg ⇒ a = g [4]

this shows gravitational field strength gives the acceleration of free fall!

Example 2.7 The earth has a radius of 6370 km. (a) Find the mass of the earth. [5] (b) Find the acceleration of free

fall at the top of Mount Everest. (height of Mount Everest H ≈ 8.8 km)

[4]Rigorously speaking, the two m’s are different concepts. There is the inertia mass, decribing how much an object resists the

change of state of motion. There is also the gravitational mass, describing the effect produced and experienced by the object in

gravitational fields. Yet no experiment has ever demonstrated any significant difference between the two. The reason why the two

masses are identical is very profound. We have shown here acceleration of free fall equals gravitational field strength, but Albert

Einstein’s equivalence principle suggests that it is actually impossible to distinguish between a uniform acceleration and a uniform

gravitational field. This idea lies at the heart of the general theory of relativity, where I should probably stop going further.
[5]British scientist Henry Cavendish devised an experiment in 1798 to measure the gravitational force between masses in his

laboratory. He was the first man to yield accurate values for the gravitational constant G . Then he was able to carry out this

calculation, referred by himself as ‘weighing the world’.
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- consider acceleration of free fall near surface of earth:

gs = GM

R2 ⇒ 9.81 = 6.67×10−11 ×M

(6.37×106)2 ⇒ M ≈ 5.97×1024 kg

at top of Mount Everest:

gME = GM

(R +H)2 = 6.67×10−11 ×5.97×1024

(6.37×106 +8.8×103)2 ≈ 9.78 N kg−1 ⇒ aME ≈ 9.78 m s−2 ä

2.3.3 gravitational field lines

gravitational field lines are drawn to graphically represent the pattern of field strength

â direction of field lines show the direction of field strength in the field

â spacing between field lines indicates the strength of the gravitational field

â gravitational field lines always end up at a mass

this arises from the attractive nature of gravitation

Example 2.8 field around the earth

earth

radial field (field lines normal to surface)

Example 2.9 field near earth’s surface

surface of earth

almost a uniform field

(field lines are parallel and equally spaced)

2.4 gravitational potential & potential energy

2.4.1 potential energy

potential energy is the energy possessed by an object due to its position in a force field

work done by force field decreases P.E., and work done against a force field increases P.E.

let W be work by the force field, then we have: W =−∆Ep

10

http://www.latexstudio.net


LATEX工作室 2 GRAVITATIONAL FIELDS

to define potential energy of an object at a specific point X , we can

(1) choose a position where potential energy is defined to be zero

(2) find work done by force field to bring the object from zero P.E. point to X

(3) consider change in P.E.: ∆Ep = Ep,X −Ep,initial = Ep,X −0 = Ep,X

but ∆Ep =−W , so P.E. at point X is found: Ep,X =−W

so potential energy is equal to (negative) work done to move the object to a specific position

gravitational potential energy near earth’s surface

we may choose a zero G.P.E. point, for example, Ep (0) = 0 at sea level

if mass m is moved up for a height h, work done by gravity is W =−mg h[6]

this causes a change in gravitational potential energy ∆Ep =−W = mg h

then at altitude h, G.P.E. can be given by Ep (h) = mg h

2.4.2 gravitational potential energy

we are now ready to derive an expression for G.P.E. between two masses M and m

we define Ep = 0 at r =∞ (choice of zero potential energy, no force so no G.P.E.), then

gravitation potential energy is equal to the work done by gravitational force to bring a mass to a specific

position from infinity

consider a mass m at infinity with zero energy and a source mass M at origin

let’s find out how much work is done by gravitational force to pull m towards the origin

M m
r

W

∞

F

xr

W

Fgrav = GMm

x2

but Fgrav varies as inverse square of separation x

so here we need to evaluate work done by a non-constant force

we can plot a F -x graph, then magnitude of work done equals area under the graph

integrate[7] to evaluate the area: W =
∫ ∞

r

GMm

x2 dx =−GMm

x

∣∣∣∣∞
r

= GMm

r

[6]Negative sign because this is actually work against gravity.

[7]In general, work done by a non-constant force over large distance is W =
∫ final

initial
F dx.

For our case, x is the displacement away from the source, but gravitational force tends to pull the mass towards the source. F

and x are in opposite directions, a negative sign is needed for F . Therefore the work done by gravity to bring mass m from infinity

is: W =
∫ r

∞
F dx =

∫ r

∞

(
−GMm

x2

)
dx =+GMm

x

∣∣∣∣r

∞
= GMm

r
.
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∆Ep =−W ⇒ Ep (r )−Ep (∞) =−GMm

r

but we have defined Ep (∞) = 0, therefore: Ep (r ) =−GMm

r
Ep (r ) gives G.P.E between masses M and m when they are at distance r from each other

â as r →∞, Ep → 0, this agrees with our choice of zero G.P.E. point

â potential energy is a scalar quantity (negative sign cannot be dropped)

â G.P.E. is always negative, this is due to attractive nature of gravity

to separate masses, work must be done to overcome attraction

so G.P.E. increases with separation r , i.e., G.P.E. is maximum at infinity, which is zero

G.P.E. between masses at finite separation must be less than zero

â Ep = mg h is only applicable near earth’s surface where field is almost uniform

Ep =−GMm

r
is a more general formula for gravitational potential energy [8]

Example 2.10 A meteor is travelling towards a planet of mass M . When it is at a distance of r1 from centre of M , it

moves at speed v1. When it is r2 from M , it moves at speed v2. Assume only gravitational force applies, establish a

relationship between these quantities.

- energy conservation: K.E.+G.P.E.= const ⇒ 1

2
mv2

1 +
(
−GMm

r1

)
= 1

2
mv2

2 +
(
−GMm

r2

)
ä

Example 2.11 If an object is thrown from the surface of a planet at sufficiently high speed, it might escape from the

influence of the planet’s gravitational field. The minimum speed required is called the escape velocity. Using the data

from previous examples, find the escape velocity from the surface of earth.

- assuming no energy loss to air resistance, then total energy is conserved

K.E.+G.P.E. at surface of planet=K.E.+G.P.E. at infinity
1

2
mu2 +

(
−GMm

R

)
= 1

2
mv2 +0

v≥0===⇒ u2 ≥ 2GM

R
⇒ umin =

√
2GM

R

for earth, escape velocity umin =
√

2×6.67×10−11 ×6.0×1024

6.4×106 ≈ 1.12×104 m s−1 ä
Question 2.5 A planet of uniform density distribution is of radius R and mass M . A rock falls from a height of 3R

above the surface of the planet. Assume the planet has no atmosphere, show that the speed of the rock when it hits

the ground is v =
√

3GM

4R
.

Question 2.6 A space probe is travelling around a planet of mass M in a circular orbit of radius r . (a) Show that the

total mechanical energy (sum of kinetic energy and gravitational energy) of the space probe is Etotal =−2GMm

r
. (b) If

the space probe is subject to small resistive forces, state the change to its orbital radius and its orbiting speed.

Question 2.7 A black hole is a region of spacetime where gravitation is so strong that even light can escape from it.

For a star of mass M to collapse and form a black hole, it has to be compressed below a certain radius. (a) Show that

this radius is given by RS = 2GM

c2 , known as the Schwarzschild radius[9]. (b) Show that the Schwarzschild radius for

the sun is about 3 km.

[8]One can recover ∆Ep = mg∆h from Ep = −GMm

r
. Near the earth’s surface, if r1 ≈ r2 ≈ R, and r1 > r2, then we have: ∆Ep =

Ep (r1)−Ep (r2) =−GMm

(
1

r1
− 1

r2

)
=GMm

r1 − r2

r1r2
≈ m

GM

R2
∆r

g=GM/R2

========== mg∆h.

[9]When you deal with very strong gravitational fields, Newton’s law of gravitation breaks down and effects of Einstein’s general

theory of relativity come into play. The radius of a Newtonian black hole being equal to the radius of a Schwarzschild black hole is a

mere coincidence.
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2.4.3 gravitational potential

it is useful to introduce a quantity called potential at a specific point in a gravitational field

gravitational potential can be considered as the potential energy per unit mass: φ= Ep

m

gravitational potential at a point is defined as the work done to bring unit mass from infinity to that point

0 r

φ

M

φ=−GM

r

â unit: [φ] = J kg−1

â gravitational potential due to an isolated source M

φ= Ep

m
= −GMm

r

m
⇒ φ=−GM

r
â potential at infinity is zero: φ∞ = 0

this is our choice of zero potential point

â gravitational potential is a scalar

combined potential due to several masses equals scalar sum of poten-

tial of each individual

â gravitational potential is always negative

again this arises from attractive nature of gravity

work is done to pull unit mass away from source

farther from source means higher potential

Example 2.12 A star A of mass MA = 1.5×1030 kg and a planet B of mass

MB = 6.0×1026 kg form an isolated astronomical system. Point P is between A and B , and is at distance r A = 2.0×1012

m from A, and distance rB = 8.0×1010 m from B . (a) Find the gravitational potential at P . (b) A meteor is initially at

very large distance from the system with negligible speed. It then travels towards point P due to the gravitational

attraction. Find its speed when it reaches P .

- gravitational potential at P : φP =φA +φB =
(
−GMA

r A

)
+

(
−GMB

rB

)
φP =−6.67×10−11 ×

(
1.5×1030

2.0×1012 + 6.0×1026

8.0×1010

)
≈−5.05×107 J kg−1

gain in K.E. = loss in G.P.E.:
1

2
mv2 = m∆φ ⇒ v2 = 2(φ∞−φP ) =−2φP

v =
√
−2× (−5.05×107) ≈ 1.01×104 m s−1 ä

Example 2.13 The Moon may be considered to be an isolated sphere of radius R = 1.74×103 km. The gravitational

potential at the surface of the moon is about −2.82×106 J kg−1. (a) Find the mass of the moon. (b) A stone travels

towards the moon such that its distance from the centre of the moon changes from 3R to 2R. Determine the change

in gravitational potential. (c) If the stone starts from rest, find its final speed.

- at surface: φ(R) =−GM

R
⇒ −2.82×106 =−6.67×10−11 ×M

1.74×106 ⇒ M = 7.36×1022 kg

from 3R to 2R: ∆φ=φ(3R) −φ(2R) =
(
−GM

3R

)
−

(
−GM

2R

)
= GM

6R
= 2.82×106

6
≈ 4.70×105 J kg−1

note this change is a decrease in gravitational potential

gain in K.E. = loss in G.P.E.:
1

2
mv2 = m∆φ ⇒ v =√

2∆φ=
√

2×4.70×105 ≈ 970 m s−1 ä
Question 2.8 Given that the moon is of radius 1700 km and mass 7.4×1022 kg. (a) Find the change in gravitational

potential when an object is moved from moon’s surface to 800 km above the surface. (b) If a rock is projected vertically

upwards with an initial speed of 1800 m s−1 from surface, find the rock’s speed when it reaches a height of 800 km.

(c) Suggest whether the rock can escape from the moon’s gravitational field completely.
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第 3章 CHAPTER 3
Oscillation

3.1 oscillatory motion

oscillation refers to a repetitive back and forth motion about its equilibrium position

the equilibrium position is a point where all forces on oscillator are balanced

release an object from its equilibrium position from rest, it will stay at rest

examples of oscillation includes pendulum of a clock, vibrating string, swing, etc.

3.1.1 amplitude, period, frequency

to describe motion of an oscillator, we define the following quantities:

â displacement (x): distance from the equilibrium position

â amplitude (x0): maximum displacement from the equilibrium position

â period (T ): time for one complete oscillation

â frequency ( f ): number of oscillations per unit time

frequency is related to period as: f = 1

T

displacement x varies with time t repetitively, for which we can plot an x-t graph

amplitude x0 and period T are labelled on the graph

t

x

T T

x0

displacement-time graph for a typical oscillator

3.1.2 phase angle

the point that an oscillator has reached within a complete cycle is called phase angle (ϕ)

â unit of phase angle: [ϕ] = rad

it looks like an angle, but better think of it as a number telling fraction of a complete cycle

â we use phase difference ∆ϕ to compare how much one oscillator is ahead of another

∆ϕ is found in terms of fraction of an oscillation: ∆ϕ= ∆t

T
×2π (also measured in radians)

Example 3.1 Compare the two oscillations from the x-t graph below.

14

http://www.latexstudio.net


LATEX工作室 3 OSCILLATION

t/ms

x/cm

10 20 30 40 50 60

-20

-10

0

10

20
- both have period T = 60 ms

frequency f = 1

60×10−3 ≈ 16.7 Hz

they are of different amplitudes

one has x0 = 15 cm, the other has x0 = 20 cm

time difference: ∆t = 20 ms

phase difference: ∆ϕ= ∆t

T
×2π= 20

60
×2π= 2π

3
rad

3.1.3 acceleration & restoring force

for any oscillatory motion, consider its velocity and acceleration at various positions

its acceleration must be always pointing towards the equilibrium position

resultant force always acts in the direction to restore the system back to its equilibrium point, this net force is

known as the restoring force

if at equilibrium position, then no acceleration or restoring force

3.2 simple harmonic oscillation

if an oscillator has an acceleration always proportional to its displacement from the equilibrium position,

and acceleration is in opposite direction to displacement, then the oscillator is performing simple harmonic

motion

many phenomena can be approximated by simple harmonics

examples are motion of a pendulum, molecular vibrations, etc.

complicated motions can be decomposed into a set of simple harmonics

simple harmonic motion provides a basis for the study of many complicated motions [10]

3.2.1 equation of motion

defining equation for simple harmonics can be written as a =−ω2x

ω is some constant, so a is proportional to x

the minus sign shows a and x are in opposite directions

general solution to this this equation of motion[11] takes the form: x = x0 sin(ωt +ϕ)

x0 represents the amplitude, ω is called the angular frequency, ϕ is the phase angle

angular frequency

â angular frequency satisfies the relation: ω= 2π

T
= 2π f

â unit of angular frequency: [ω] = rad ·s−1

â angular frequency ω is determined by the system’s physical constants only

if an object is set to oscillate freely with no external force, its period will always be the same

frequency of an free oscillatory system is called the natural frequency

[10]This can be done through a mathematical technique known as Fourier analysis. For example, a uniform circular motion can be

considered as the combination of two simple harmonic motion in x- and y-directions.

[11]You probably know that acceleration can be written as the second derivative of displacement: a = d2x

dt 2
, so a =−ω2x is equiv-

alent to
d2x

dt 2
+ω2x = 0, which a second-order differential equation. If you do not know how to solve it, you may have the chance to

study this in an advanced calculus course.
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phase angle

â phase angle ϕ is dependent on initial conditions (e.g. initial position and initial speed at t = 0?)

â in many cases, phase angle term can be avoided if a suitable trigonometric function is chosen

Example 3.2 A simple harmonic oscillator is displaced by 6.0 cm from its rest position and let go at t = 0. Given that

the period of this system is 0.80 s, state an equation for its displacement-time relation.

t

x

- angular frequency: ω= 2π

T
= 2π

0.80
= 5π

2
π rad s−1

initial displacement x(0) =+x0 = 6.0 cm

for displacement-time relation, we use cosine function

x(t ) = x0 cosωt ⇒ x = 6.0cos

(
5π

2
t

)
ä

Example 3.3 A simple harmonic oscillator is initially at rest. At t = 0, it is given

an initial speed in the negative direction. Given that the frequency is 1.5 Hz and the amplitude is 5.0 cm, state an

equation for its displacement-time relation.

t

x

- angular frequency: ω= 2π f = 2π×1.5 = 3π rad s−1

initial displacement x(0) = 0

for displacement-time relation, we use sine function

x(t ) =−x0 cosωt ⇒ x =−5.0sin(3πt ) ä

3.2.2 examples of simple harmonics

mass-spring oscillator

a mass-spring oscillator system consists of a block of mass m and an ideal spring

m m

k

F

0
+

x

mm

k

F

0
+−x

restoring force acting on the ideal mass-spring oscillator

when a spring is stretched or compressed by a mass, the spring develops a restoring force

magnitude of this force obeys Hooke’s law: F = kx

direction of this force is in opposite direction to displacement x

take vector nature of force into account, we find

Fnet = ma ⇒ −kx = ma ⇒ a =− k

m
x

spring constant k and mass m are constants, so a ∝ x

negative sign shows a and x are in opposite directions

so mass-spring oscillator executes simple harmonic motion

compare with a =−ω2x ⇒ ω2 = k

m
⇒ ω=

√
k

m
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period of mass-spring oscillator: T = 2π

ω
⇒ T = 2π

√
m

k
â period and frequency are solely determined by mass of oscillator m and spring constant k

identical mass-spring systems will oscillate at same frequency no matter what amplitude

â m 1⇒ T 1, greater mass means greater inertia, oscillation becomes slower

â k 1⇒ T %, greater k means stiffer spring, greater restoring force makes oscillation go faster

simple pendulum

a simple pendulum is set up by hanging a bob on a light cord from a fixed point

displace the bob by some angle and release from rest, it can swing freely

0

θ

mg

T

+
x

one can show this performs simple harmonic motion for small-angle oscillation

if angular displacement θ is small, then the pendulum has almost no vertical

displacement, the motion can be considered to be purely horizontal

vertically: T cosθ ≈ mg
cosθ≈1 as θ→0===========⇒ T ≈ mg

horizontally: −T sinθ = ma
sinθ=x/L=======⇒ a ≈− g

L
x

this shows simple pendulum undergoes simple harmonics

compare with defining equation for simple harmonics:

a =−ω2x ⇒ ω=
√

g

L

period for a simple pendulum: T = 2π

√
L

g

â period and frequency of a pendulum are determined by length of the string L

only

as long as angular displacement remains small, frequency does not depend on

amplitude

fix length L, then simple pendulum oscillates at same frequency no matter what

amplitude

â L 1⇒ T 1, longer pendulums oscillate more slowly

â g %⇒ T 1, if there is no gravity (g = 0), then the bob will not move at all (T →∞)

Question 3.1 A cylindrical tube of total mass m and cross sectional area A floats upright in a liquid of density ρ.

When the tube is given a small vertical displacement and released, the magnitude of the resultant force acting on the

tube is related to its vertical displacement y by the expression: Fnet = ρg Ay . (a) Show that the tube executes simple

harmonic motion. (b) Find an expression for the frequency of the oscillation.

Question 3.2 A small glider moves along a horizontal air track and bounces off the buffers at the ends of the track.

Assume the track is frictionless and the buffers are perfectly elastic, state and explain whether the glider describes

simple harmonic motion.

3.2.3 velocity & acceleration

displacement of simple harmonic oscillator varies with time as: x = x0 sin(ωt +ϕ)

from this displacement-time relation, we can find velocity and acceleration relations

velocity

to find velocity-time relation, let’s recall that velocity v is rate of change of displacement x

v = dx

dt
= d

dt
x0 sin(ωt +ϕ) ⇒ v(t ) =ωx0 cos(ωt +ϕ)

by taking v2 +ω2x2, the sine and cosine terms can be eliminated, we find:

v2 +ω2x2 =ω2x2
0 cos2(· · · )+ω2x2

0 sin2(· · · ) =ω2x2
0
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this gives velocity-displacement relation: v(x) =±ω
√

x2
0 −x2

â at equilibrium position x = 0, speed is maximum: vmax =ωx0

â when x =±x0, oscillator is momentarily at rest: v = 0

acceleration

acceleration-time relation is found by further taking rate of change of velocity v

a = dv

dt
= d

dt
ωx0 cos(ωt +ϕ) ⇒ a(t ) =−ω2x0 sin(ωt +ϕ)

this is actually unnecessary, if we compare this with x(t ) = x0 sin(ωt +ϕ), we have: a =−ω2x

we have recovered the definition for simple harmonics

(if a ∝ x and in opposite directions to x, then simple harmonic motion)

so acceleration-displacement relation is given by the defining equation explicitly a(x) =−ω2x

â at equilibrium position x = 0, zero acceleration

â when x =±x0, acceleration is greatest: amax =ω2x0

let’s take x = x0 sinωt as example, changes of x, v , a over time are listed below

time t 0 1
4 T 1

2 T 3
4 T T

displacement: x = x0 sinωt 0 +max 0 −max 0

velocity: v =ωx0 cosωt +max 0 −max 0 +max

acceleration: a =−ω2x =−ω2x0 sinωt 0 −max 0 +max 0

x

v

+x0−x0

+vmax

−vmax

velocity-displacement graph

x

a

+x0

−x0

+amax

−amax

acceleration-displacement graph

Example 3.4 The motion of a simple pendulum is approximately simple harmonic. As the pendulum swings from

one side to the other end, it moves through a distance of 6.0 cm and the time taken is 1.0 s. (a) State the period and

amplitude. (b) Find the greatest speed during the oscillation. (c) Find its speed when displacement x = 1.2 cm.

- period: T = 2×1.0 = 2.0 s, and amplitude: x0 = 1

2
×6.0 = 3.0 cm

angular frequency: ω= 2π

T
= 2π

2.0
=π rad s−1

greatest speed: vmax =ωx0 =π×3.0 ≈ 9.4 cm s−1

speed at 1.2 cm: v =ω
√

x2
0 −x2 =π×

√
3.02 −1.22 ≈ 8.6 cm s−1 ä

Example 3.5 Given the x-t graph of a simple harmonic oscillator. (a) Find its speed at t = 0. (b) Find its greatest

speed. (b) Find its acceleration at t = 1.0 s.

t/s

x/cm

1.0 2.0 3.0

-30
-20
-10

0
10
20
30

- at t = 0, x =+x0 ⇒ v = 0 (zero gradient)

from graph: amplitude x0 = 30 cm, period T = 4.0 s

angular frequency: ω= 2π

T
= 2π

4
= π

2
rad s−1

greatest speed: vmax =ωA = π

2
×30 ≈ 47 cm s−1
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at t = 1.0 s, x = 0 ⇒ a = 0

(equilibrium position so no acceleration) ä
Question 3.3 Assume the motion of a car engine piston is simple

harmonic. The piston completes 3000 oscillations per minute. The

amplitude of the oscillation is 4.0 cm. (a) Find the greatest speed.

(b) Find the greatest acceleration.

3.2.4 vibrational energy

consider the ideal mass-spring oscillator, its vibrational energy consists of two parts:

- kinetic energy of the mass: Ek = 1

2
mv2 = 1

2
mω2 A2 cos2ωt

v=±ω
√

x2
0−x2

============ 1

2
mω2(x2

0 −x2)

- (elastic) potential energy in the spring: Ep = 1

2
kx2

ω=
√

k
m======= 1

2
mω2x2

total energy of the oscillator: E = Ek +Ep ⇒ E = 1

2
mω2x2

0

â although this formula is derived from the mass-spring model

E = 1

2
mω2x2

0 can be used to compute vibrational energy of all simple harmonic oscillators

â for an ideal system, total energy remains constant

Ek and Ep keep changing, one transfers into another, but total energy is conserved

â when x = 0, Ek =max, Ep = 0, vibrational energy is purely kinetic

E = Ek,max =
1

2
mv2

max
vmax=ωx0========= 1

2
mω2x2

0

â when x =±x0, Ek = 0, Ep =max, vibrational energy is purely potential

E = Ep,max = 1

2
kx2

0

ω=
√

k
m======= 1

2
mω2x2

0

-x0 x0 x

E

Ep

Ek

Etotal

t

E

Ep

Ek

Etotal

T

2
T

vibrational energy of a mass-spring oscillator

Example 3.6 A block of mass 150 g at the end of a spring oscillates with a period of 0.80 s. The maximum displace-

ment from its rest position is 12 cm. Find the energy of the vibration.

- E = 1

2
mω2x2

0 = 1

2
m

(
2π

T

)2

x2
0 = 1

2
×0.15× 4π2

0.802 ×0.122 ≈ 6.7×10−2 J ä
Question 3.4 An oscillator is given an energy of 20 mJ and starts to oscillate, it reaches an amplitude of 8.0 cm. If we

want to double the amplitude, find the vibrational energy required.

3.3 damped oscillations

total vibrational energy stays constant for an ideal system

but in reality, there are friction, resistance and viscous forces that oppose motion

amplitude of an oscillator decreases due to energy loss to friction, this is called damping
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3.3.1 light damping

for a lightly-damped oscillator, amplitude decreases gradually

oscillator will not stop moving back and forth after quite a few oscillations

t

x

exponential envelope

â decrease in amplitude is non-linear in time (exponential decay in many cases)

â frequency and period are (almost) unchanged

Example 3.7 An oscillator is composed of a block of mass m = 250 g and a spring of k = 1.6 N/cm. It is displaced by

5.0 cm from its rest position and set free. (a) What is its angular frequency? (b) what is the initial vibrational energy?

(c) After a few oscillations, 40% of its energy is lost due to damping. What is its new amplitude?

- angular frequency: ω=
√

k

m
=

√
160

0.25
≈ 25.3 rad s−1

energy of oscillator: E = 1

2
mω2x2

0 = 1

2
×0.25×25.32 ×0.0502 = 0.20 J[12]

since E ∝ x2
0 , so:

E ′

E
= x ′2

0

x2
0

⇒ 60% = x ′2
0

x2
0

⇒ x ′
0 =

p
0.6x0 =

p
0.6×5.0 ≈ 3.9 cm ä

Question 3.5 A small toy boat of mass 360 g floats on surface of water. It is gently pushed down and then released.

During the fist four complete cycles of its oscillation, its amplitude decreased from 5.0 cm to 2.0 cm in a time of 6.0 s.

Find the energy loss.

3.3.2 heavy damping

if resistive forces are too strong, there will be no oscillatory motion

the system will return to the equilibrium position very slowly

this system is said to be heavily damped

3.3.3 critical damping

critical damping is the border between light damping and heavy damping

it occurs when system returns to equilibrium in shortest time without any oscillation

â critical damping is desirable in many engineering designs [13]

examples include door-closing mechanism, shock absorbers in vehicles and artillery, etc.

[12]An easier approach: E = 1

2
kx2

0 = 1

2
×160×0.0502 = 0.20 J.

[13]When a damped oscillator is required, critically-damped system provides the quickest approach to equilibrium without over-

shooting, while lightly-damped system reaches the zero position quickly but continues to oscillate, and heavily-damped system

reaches zero position in very long time.
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t

x
heavy dampingcritical damping ideal (zero damping)

T 2T

3.4 forced oscillations

3.4.1 free & forced oscillation

an oscillator moving on its own with no gain or loss of energy is called free oscillation

amplitude of the oscillation is constant, its frequency called natural frequency

an oscillator may also move under an external driving force, it is forced oscillation

frequency of forced oscillator tends to driving frequency after sufficiently long time

3.4.2 resonance

for a forced oscillation system, when frequency of driving force fdriving is close to natural frequency fnatural,

amplitude of oscillator increases rapidly

when driving frequency of external force equals natural frequency of the system, amplitude of the system

becomes maximum, this phenomenon is called resonance

fnatural fdriving

x0

resonance is achieved when fdriving = fnatural

(amplitude tends to infinity if no damping)

â practical application of resonance

- microwave oven – water molecules resonate at microwave frequency and vibrate greatly
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- MRI (magnetic resonance imaging) — precession of nuclei resonate at radio frequency, signals are processed to

image nuclei of atoms inside a human body in detail

- radio/TV — RLC tuning circuits resonate at frequency of signals being received

â possible problems caused by resonance

- buildings during earthquake – resonate at frequency of shockwaves and collapse

- car suspension system – going over bumps may give large amplitude vibrations

– bridges and skyscrapers – resonance due to wind conditions

3.4.3 damping & resonance

an oscillation system can be subject to both driving force and resistive force

resonance behaviour will be changed by damping effects

â damping decreases amplitude of oscillation at all frequencies

greater damping causes resonance peak to become flatter

engineering systems are often deliberately damped to minimise resonance effect

â damping also shifts resonance frequency (slightly reduced for light damping)

fnatural fdriving

x0
fres

heavy damping

light damping

resonance effect for various damping conditions
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第 4章 CHAPTER 4
Ideal Gases

4.1 gas molecules

4.1.1 motion of gas particles

motion of gas molecules in a container

gas consists of a large number of molecules

gas molecules move randomly at high speeds

â randomness results from collisions of fast-moving molecules in the gas

for an individual molecule, its velocity changes constantly as it col-

lides with other molecules

for the gas at any instant, there is a range of velocities for molecules

â experimental evidence of random motion: Brownian motion

dust or smoke particles in air undergo jerky random motion (viewed

through microscope)

this is due to collisions with gas molecules that move randomly

â speed of gas molecules depend on temperature

molecules move faster at higher temperature[14]

4.1.2 amount of molecules

there are a huge number of molecules in a gas

we introduce amount of substance to measure the size of a collection of particles

â unit of amount of substance: [n] =mol

one mole is defined as the amount carbon-12 atoms in a sample of 12 grams

â 1 mole of substance contains 6.02×1023 particles

this number is called Avogadro constant: NA = 6.02×1023 mol−1 [15]

conversion between number of molecules and amount of substance: N = nNA

â it is useful to introduce the notion of molar mass M

molar mass of a substance is defined as the mass of a given sample divided by the amount of substance:

M = m

n

– amount of substance= mass of sample
molar mass

, or n = m

M

– mass of single molecule= molar mass
Avogadro constant

, or m0 = M

NA

[14]We will prove this statement later in this chapter.
[15]In 2018, IUPAC suggested a new definition of the mole, which is defined to contain exactly 6.02×1023 particles. This new

definition fixed numerical value of the Avogadro constant, and emphasized that the quantity ‘amount of substance’ is concerned

with counting number of particles rather than measuring the mass of a sample.
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Example 4.1 Find the number of molecules in 160 grams of argon-40 gas.

- amount of gas: n = m

M
= 160 g

40 g mol−1 = 4.0 mol

number of gas molecules: N = nNA = 4.0 mol×6.02×1023 mol−1 ≈ 2.41×1024 ä
Question 4.1 Find the mass of a sample of uranium-235 that contains 6.0×1020 atoms.

4.1.3 pressure (qualitative view)

when gas molecules collide with walls of container and rebound, they are acted by a force

by Newton’s third law, gas molecules must exert a reaction force on container in return

contributions from many molecules give rise to a pressure

Example 4.2 If a gas is heated with its volume fixed, how does the pressure change?

- at higher temperature, gas molecules move faster

they will collide harder and produce a greater force upon each collision

they will also collide more frequently with the container

so pressure of the gas will increase ä
Question 4.2 If you pump gas into a bicycle tyre, state and explain how the pressure changes.

Question 4.3 A fixed amount of gas is allowed to expand at constant temperature, state and explain how the pressure

changes.

4.2 ideal gas

4.2.1 ideal gas equation

a gas that satisfies the equation pV = nRT or pV = N kT at any pressure p, any volume V , and thermody-

namic temperature T is called an ideal gas

molar gas constant: R = 8.31 J mol−1 K−1

Boltzmann constant: k = 1.38×10−23 J K−1

values of R and k apply for any ideal gas, i.e., they are universal constants

â recall conversion between number of molecules and amount of substance: N = nNA

we have relation between the constants: R = kNA , or k = R

NA
â one must use thermodynamic temperature in the equation

thermodynamic temperature is measured in kelvins (K), so it is also called the Kelvin scale[16]

conversion between Kelvin temperature and Celsius temperature: TK (K)
-273

GGGGGGGBFGGGGGGG

+273
TC (◦C)

real gases

real gas behaves ideally at sufficiently high temperature and low pressure

– at very low temperatures, real gas will condense into liquid or solid

– at very high pressures, intermolecular forces become important

however, under normal conditions (room temperature T ≈ 300 K and standard atmospheric pressure p ≈ 1.0×
105 Pa), there is no significant difference between a real gas and an ideal gas

[16]We will discuss in details about Kelvin scale in §4.4.1 and §??.
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so ideal gas approximation can be used with good accuracy for most of our applications

Example 4.3 A sealed cylinder of volume of 0.050 m3 contains 75 g of air. The molar mass of air is 29 g mol−1. (a)

Find the air pressure when its temperature is 30◦C. (b) The gas is allowed to expand with its pressure fixed. Find the

temperature of the gas when the volume doubles.

- amount of gas: n = m

M
= 75

29
≈ 2.59 mol

pressure at 30◦C: p = nRT1

V1
= 2.59×8.31× (30+273)

0.050
≈ 1.30×105 Pa

pressure fixed, so V ∝ T ⇒ T2

T1
= V2

V1
= 2 ⇒ T2 = 2× (30+273) = 606 K= 333◦C ä

Example 4.4 A gas cylinder holding 5000 cm3 of air at a temperature of 27 ◦C and a pressure of 6.0×105 Pa is used

to fill balloons. Each balloon contains 1000 cm3 of air at 27 ◦C and 1.0×105 Pa when filled. (a) Find the initial amount

of gas in the cylinder. (b) Find the number of balloons that can be filled.

- initial amount of gas in cylinder: n0 = p0V

RT
= 9.0×105 ×5000×10−6

8.31× (27+273)
≈ 1.203 mol

final amount of gas in cylinder: nremain = pV

RT
= 1.0×105 ×5000×10−6

8.31× (27+273)
≈ 0.201 mol[17]

amount of gas in each balloon: nb = pVb

RT
= 1.0×105 ×1000×10−6

8.31× (27+273)
≈ 0.040 mol

number of balloons: N = n0 −nremain

nb
= 1.203−0.201

0.040
≈ 25 ä

Example 4.5 A storage cylinder has a volume of 5.0×10−4 m3. The gas is at a temperature of 300 K and a pressure of

4.0×106 Pa. (a) Find the number of molecules in the cylinder. (b) The gas molecules slowly leak from the cylinder at

a rate of 1.6×1016 s−1. Find the time, in days, after which the pressure will reduce by 5.0%.

- initial number of molecules: N0 = p0V

kT
= 4.0×106 ×5.0×10−4

1.38×10−23 ×300
≈ 4.83×1023

volume fixed, so N ∝ p ⇒ ∆N

N0
= ∆p

p0
= 5.0%

number of molecules escaped: ∆N = 0.05×4.83×1023 ≈ 2.42×1022

time needed: t = 2.42×1022

1.6×1016 ≈ 1.51×106 s≈ 17.4 days ä

[17]Air will leave the cylinder to fill balloons only if pressure inside the cylinder is higher than pressure of the balloon. When the

two pressures become equal, no more balloons can be filled, there will be some air remain in cylinder.
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Question 4.4 Containers A has a volume of 2.5×10−2 m3 contains a gas at a temperature of 17◦C and pressure of

1.3×105 Pa and . Another container B of same size holds a gas at same temperature and a pressure of 1.9×105 Pa. The

two containers are initially isolated from each another. (a) Find the total amount of molecules. (b) The two containers

are now connected through a tube of negligible volume. Assume the temperature stays unchanged, find the final

pressure of the gas.

Question 4.5 The air in a car tyre can be assumed to have a constant volume of 3.0×10−2 m3 . The pressure of this

air is 2.8×105 Pa at a temperature of 25◦C. The pressure is to be increased using a pump. On each stroke 0.015 mol of

air is forced into the tyre. If gas has a final pressure of 3.6×105 Pa and final temperature of 28◦C. Find the number of

strokes of the pump required.

4.2.2 empirical laws

historically, the ideal gas law was first stated by Émile Clapeyron in 1834:

for a fixed amount of gas,
PV

T
= const

his work was based on the empirical Boyle’s law, Charles’s law, and Gay-Lussac’s law

we will next recover these laws from the ideal gas equation

Boyle’s law

Boyle’s law was discovered by Robert Boyle in 1662, based on experimental observations

p

0 V

pV = const

if temperature T remains constant, then

pV = const , or p ∝ 1

V
pressure p of gas is inversely proportional to volume V

â for a gas with fixed temperature: p1V1 = p2V2

â a thermodynamic process for which temperature is kept constant is called an

isothermal process

p-V relation for an isothermal process is shown

Charles’s law

Charles’s law was discovered by Jacques Charles in 1787, based on experimen-

tal observations

V

TK /K

TC /◦C-200 -100 0 100 200

0 100 200 300 400 500

-273

ideal behaviour

if pressure p remains constant, then:
V

T
= const , or V ∝ T

i.e., volume V of gas is directly proportional to its temperature T

â proportionality relation only applies if Kelvin scale is used
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â a thermodynamic process for which pressure is kept constant is called an isobaric process

V -T relation for an isobaric process is shown

â Charles’s law implies that volume of gas tends to zero at a certain temperature

historically this is how the idea of absolute zero first arose

â as T → 0, a real gas condenses into solid

there will be deviation from ideal behaviour (dotted line)

Gay-Lussac’s law p

0 T

Gay-Lussac’s law was discovered by Joseph Louis Gay-Lussac between 1800 and

1802

if volume V remains constant, then
p

T
= const , or p ∝ T

i.e., pressure p is directly proportional to temperature T

â a thermodynamic process for which volume is kept constant is called an isochoric

process, or isometric process

p-T relation for an isochoric process is shown

â behaviour of real gas again deviates from ideal behaviour (dotted line) as T → 0

4.3 kinetic theory of ideal gases

kinetic model of gases: a theory based on microscopic motion of molecules of a gas that explains its macroscopic

properties

4.3.1 assumptions of ideal gas model

kinetic theory of the ideal gas model is based on the following assumptions:

– gas molecules are in constant random motion

– intermolecular separation is much greater than size of molecules

volume of molecules is negligible compared to volume occupied by gas

– intermolecular forces are negligible

– collisions between molecules are perfectly elastic, i.e., no kinetic energy lost

– molecules travel in straight line between collisions

Example 4.6 A mass of 20 g helium-4 at a temperature of 37◦C has a pressure of 1.2×105 Pa. Each helium-4 atom

has a diameter of 280 pm. (a) Find the volume occupied by the gas and the volume of atoms in this gas. (b) Compare

the two volumes, suggest whether this gas can be considered as an ideal gas.

- number of helium molecules: N = nNA = m

M
×NA = 20

4.0
×6.02×1023 ≈ 3.01×1024

volume of gas: Vgas = N kT

p
= 3.01×1024 ×1.38×10−23 × (37+273)

1.2×105 ≈ 0.107 m3

volume of one atom: Vatom = 4

3
πr 3 = 4

3
π× (140×10−12)3 ≈ 1.15×10−29 m3

volume of all atoms: Vatoms = NVatom = 3.01×1024 ×1.15×10−29 m3 ≈ 3.46×10−5 m3

Vgas ÀVatoms, so this gas can approximate to an ideal gas ä

4.3.2 pressure (quantitative view)

we are ready to derive a formula for pressure due to ideal gas
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pressure of gas is due to collision of gas molecules with container

let’s first consider the effect of one single molecule moving in one dimension only, and then generalise the result

to a gas containing N molecules moving in all three dimensions

v

l

A m

one gas molecule moving in 1-D

let’s assume this single molecule only moves in x-direction (see figure)

change in momentum when colliding with wall: ∆Px = mvx − (−mvx ) = 2mvx
[18]

time interval between collisions: ∆t = 2l

vx

average force acting: Fx = ∆Px

∆t
= 2mvx

2l
vx

= mv2
x

l

average pressure: px = F

A
= mv2

x

l A
= ⇒ px = mv2

x

V
generalisation to N molecules moving in 3-D

– N molecules so N times the contributions to pressure

but there is a distribution of speeds for N molecules, so should take average of v2

– in three-dimensional space, we have: v2 = v2
x + v2

y + v2
z

but molecules have no preference in any specific direction, so: 〈v2
x〉 = 〈v2

y 〉 = 〈v2
z 〉 =

〈v2〉
3

pressure should be shared equally among three dimensions: p = px = py = pz

therefore we find the pressure of an ideal gas is given by: p = N m 〈v2〉
3V

â 〈v2〉 is the mean square velocity of gas molecules

we can further define r.m.s. (root mean square) velocity: vrms =
√
〈v2〉

gas molecules in random motion so there exists a range of velocities

we cannot tell exact velocity of a specific molecule, but can only tell mean values

â N is number of molecules, m is mass of one molecule

then N m gives total mass of the gas, and
N m

V
gives gas density ρ

we can rewrite the pressure formula as: p = 1

3
ρ 〈v2〉

(pressure depends only on density and mean square speed of molecules)

â physical interpretation of the formula

– N 1 ⇒ more molecules, more collisions ⇒ p 1
– m 1 ⇒ greater mass, greater force upon collision ⇒ p 1
– v 1 ⇒ strike container harder, also more often ⇒ p 1
– V 1 ⇒ spend more time in gas, less frequent collision with container ⇒ p %

[18]In this section we use P for momentum of a particle and p for pressure of a gas to avoid confusion.
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4.3.3 kinetic energy

we now have two equations for ideal gases: pV = nRT , or pV = N kT ideal gas law

p = N m 〈v2〉
3V

pressure law

compare the two equations: pV = 1

3
N m 〈v2〉 = N kT ⇒ m 〈v2〉 = 3kT

mean kinetic energy of a single molecule in a gas is: 〈Ek〉 =
1

2
m 〈v2〉 = 3

2
kT

mean K.E. of ideal gas molecules is proportional to its thermodynamic temperature

â useful relation for molecular speeds: v2
rms ∝ T

recall our statement in §4.1.1, higher temperature means higher speed for molecules

â we only talk about translational K.E. here

molecules have this energy because they are moving through space

total kinetic energy may also include rotational K.E. and vibrational K.E. [19]

â 〈Ek〉 =
3

2
kT gives the mean, or average K.E. per molecule

gas molecules exchange energies with each other upon collisions

for an individual molecule, its K.E. is not a constant

but mean K.E. is constant, which depends on temperature T only

â in a mixture of several gases, K.E. is shared equally among its components

this is because of repeated collisions between particles

though all molecules have same K.E., heavier molecules will move more slowly

Example 4.7 Air consists of oxygen (O2, molar mass 32 g mol−1) and nitrogen (N2, molar mass 28 g mol−1). (a)

Calculate the mean translational kinetic energy of these molecules at 300 K. (b) Estimate the typical speed for each

type of the molecule.

- mean K.E. of single molecule: 〈Ek〉 =
3

2
kT = 3

2
×1.38×10−23 ×300 ≈ 6.21×10−21 J

〈Ek〉 =
1

2
m 〈v2〉 = 3

2
kT ⇒ 1

2

M

NA
〈v2〉 = 3

2
kT ⇒ 〈v2〉 = 3kNAT

M
= 3RT

M

for oxygen molecule: vO2 ≈
√

3×8.31×300

0.032
≈ 483 m s−1

for nitrogen molecule: vN2 ≈
√

3×8.31×300

0.028
≈ 517 m s−1 ä

Example 4.8 A cylinder container initially holds a gas of helium-4 at a temperature of 54◦C. (a) Find the mean square

speed of these helium atoms. (b) If the temperature is raised to 540◦C, find the r.m.s. speed of the atoms.

- mass of one helium-4 atom: m = 4u= 4×1.66×10−27 ≈ 6.64×10−27 kg

at 54◦C:
1

2
m 〈v2〉 = 3

2
kT ⇒ 〈v2〉 = 3kT

m
= 3×1.38×10−23 × (54+273)

6.64×10−27 ≈ 2.04×106 m2 s−2

note relation between v and T : 〈v2〉∝ T ⇒ 〈v ′2〉
〈v2〉 = T ′

T
⇒ v ′

rms =
√

T ′

T
× vrms

at 540◦C: v ′
rms =

√
540+273

54+273
×

√
2.04×106 ≈ 2.25×103 m s−1 ä

Question 4.6 A fixed mass of gas expands to twice its volume at constant temperature. (a) How does its pressure

change? (b) How does mean kinetic energy change?

Question 4.7 In order for a molecule to escape from the gravitational field of the earth, it must have a speed of

[19]There is an important result in classical thermal physics, known as the equipartition of energy theorem. It states that the average

energy per molecule is
1

2
kT for each independent degree of freedom. A molecule can move in three directions, corresponding to three

translational degrees of freedom, thus its mean translational kinetic energy is
3

2
kT . For a polyatomic gas (each molecule consists

of several atoms), apart from translational motion , it has additional rotational degrees of freedom and different vibrational modes,

so its average energy can be calculated by counting the total number of degrees of freedom.
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1.1×106 m s−1 at the top of the atmosphere. (a) Estimate the temperature at which helium-4 atoms could have this

speed. (b) Helium atom actually escape from top of the atmosphere at much lower temperatures, explain how this is

possible.

4.4 thermal physics basics

4.4.1 temperature scales

TC (◦C) TK (K)

-273◦C

-196◦C

0◦C
25◦C

100◦C

0 K

77 K

273 K
298 K

373 K

absolute zero

liquid nitrogen

ice-water mixture
room temperature

boilng water

â Celsius scale (unit: ◦C)

0◦C defined as temperature of ice-water mixture

100◦C defined as temperature of boiling water

â Kelvin scale (unit: K)

0 K (absolute zero) is lowest temperature possible

â conversion rule: TK (K)
-273

GGGGGGGBFGGGGGGG

+273
TC (◦C)

â change of 1◦C equals change of 1 K

4.4.2 kinetic theory of matter

there are three common states of matter: solid, liquid and gas

they have very different physical properties (density, compressibility, fluidity, etc.)

but deep down, they are all composed of a large number of small molecules

in the kinetic theory of matter, we look at microscopic behaviour at molecular level (arrangement, motion,

intermolecular forces, separation, etc.)

microscopic behaviour of molecules cause differences in macroscopic properties of matter

– solid: molecules close together, tightly bonded, vibrate about their positions

– liquid: molecules quite close together, vibrate but has some freedom to move about

– gas: molecules widely separated, free from neighbours, move rapidly
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ここに Titleを書くのだ

吾輩は猫である。名前はまだない。

どこで生れたか頓（とん）と見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけ

は記憶している。吾輩はここで始めて人間というものを見た。しかもあとで聞くとそれは書生という人間中

で一番獰悪（どうあく）な種族であったそうだ。

さらにオプションを加えるのだ

【大きくしてみた。】吾輩は猫である。名前はまだない。

どこで生れたか頓（とん）と見当がつかぬ。何でも薄暗いじめじめした所

でニャーニャー泣いていた事だけは記憶している。吾輩はここで始めて人

間というものを見た。しかもあとで聞くとそれは書生という人間中で一番

獰悪（どうあく）な種族であったそうだ。

中間値の定理定 理 应 用 中間値の定理

地球の赤道上にある点 Pを置き，その対蹠地をQとする。ここでQは赤道上にあると仮定する。このとき点

Pでの気温と点 Qの気温が同じになるように，点 Pを上手にとることができる。その理由を説明しなさい。

回顾上节内容

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

课前知识点预习

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

知识课后总结：
私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたた

です。腹の中に行きた事も初めて十月にともかくうますない。

知识巩固归纳

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。
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知识探索

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

解题思路分析： 私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

思考与探究

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

【解答与反思】

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたた

です。腹の中に行きた事も初めて十月にともかくうますない。

【知识点衔接】

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

知识点梳理

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

讨论与探究

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

内容概要

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもし

ないたたです。腹の中に行きた事も初めて十月にともかくうますない。

32

http://www.latexstudio.net


LATEX工作室 4 IDEAL GASES

章节目录

私は場 fwefwag

合もっともこの反駁学というのの時へ閉じたま

せ。

どうしても今に反抗人はまあそうした研究でなく

だけのしからみるたには矛盾さならだて、当然に

もしないたたです。腹の中に行きた事も初めて十

月にともかくうますない。

错题纠正

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたた

です。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

每日一句

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないた

たです。腹の中に行きた事も初めて十月にともかくうますない。

【巩固与反思】

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。

笔记 1

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

笔记 2

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。
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コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

コラム

私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしないたたで

す。腹の中に行きた事も初めて十月にともかくうますない。

练习 2 異なる 2つの実数解であるとき
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解

练习 3 次の問題に答えなさい。

1. 8人を 2つの組に分ける方法は何通りあるか。

2. 6人を 3つの部屋 A，B，Cに入れる方法は何通りあるか。ただし各部屋に少なくとも 1人は入る

ものとする。

区別があるかどうかを正しく考えます。

1. なんだかんだで 127通り

2. なんだかんだで 540通り

中間値の定理

区間 [α,β]で連続な関数 f (x)について，f (α)と f (β)の間にある任意の実数 cに対して，ある実数 k ∈ (α,β)

を

f (k) = c

を満たすようにとることが出来る。

定理 4.1: 中間値の定理

区間 [α,β]で連続な関数 f (x)について，f (α)と f (β)の間にある任意の実数 c に対して，ある実数 k ∈ (α,β)を，

f (k) = c を満たすようにとることが出来る。

命題 4.2: 方程式の実数解の存在

区間 [α,β]で連続な関数 f (x)について，f (α) f (β) < 0ならば，方程式 f (x) = 0は α< x <βの範囲に少なくとも

1つの実数解をもつ。

!
私は場合もっともこの反駁学というのの時へ閉じたませ。

どうしても今に反抗人はまあそうした研究でなくだけのしからみるたには矛盾さならだて、当然にもしない

たたです。腹の中に行きた事も初めて十月にともかくうますない。
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