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. ==~ 1 == CHAPTER 1

Circular Motion

1.1 Angular quantities

» Angular quantities

movement or rotation of an object along a circular path is called circular motion
to describe a circular motion, we can use angular quantities, which turn out to be more useful than linear displace-

ment, linear velocity , etc.

1.1.1 angular displacement

’ angular displacement ]

angular displacement is angle swiped out by object moving along circular

e R "

> unit: [f] = rad (natural unit of measurement for angles) e

conversion rule: 27 rad = 360° s
> if two radii form an angle of 6, then length of arc: s=r6 .
two radii subtending an arc of same length as radius form an angle of one a 7

radian

angular displacement is angle swiped out by object moving along circular

o e tagb sty bty e

1.1.2 angular velocity

> R

angular velocity describes how fast an object moves along a circular path

CEEWS

AB
angular velocity is defined as angular displacement swiped out per unit time: B

-1 also in radian measures

> unit of: [w] = rad s
> angular velocity is a vector quantity
this vector points in a direction normal to the plane of circular motion

but in A-level course, we treat angular velocity as if it is a scalar

angular velocity and angular speed may be considered to be the same idea

EESAXES

n interval At, distance moved along arc
A
As=vAt=rA0 = w=—=- = (V=0T
r
this relation between linear speed and angular speed holds at any instant
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The vector points in the direction perpendicular to the circular motion plane, but in the A-level course, we treat
the angular velocity as a scalar , That is, when we consider angular velocity, we regard it and linear velocity as the
same physical quantity to describe the most circular motion of an object.

For the constant relationship between linear velocity and angular velocity, we can use linear velocity to describe

the angular velocity, and conversely, we can use angular velocity to describe linear velocity.

1.1.3 Uniform circular motion

» X5

when studying linear motion, we started from motion with constant velocity v

consider the simplest possible circular motion — circular motion with constant w

CEEEEER oo

analogy with linear motion with constant v
uniform linear motion: s = vt v
displacement s < 6, velocity v < w

for uniform circular motion, one has: | 6 = wt

E > time taken for one complete revolution is called period T v E
E in one T, angle swiped is 27, so | w = 2?7: E
E > uniform circular motion is still accelerated motion E
E speed is unchanged, but velocity is changing E
E direction of velocity always fangential to its path, so direction of velocity ’ :
. keeps changing E
E in general, any object moving along circular path is accelerating. :
A w:z?” = % ~0.157rads™!  v=wr=0157x25~039ms"' O
1 1

#4311 Whatis the angular velocity of the minute hand of a clock?

%3]2 A spacecraft moves around the earth in a circular orbit. The spacecraft has a speed of 7200 m s™! at a
height of 1300 km above the surface of the earth. Given that the radius of the earth is 6400 km. (a) What
is the angular speed of this spacecraft? (b) What is its period?

1.1.4 centripetal acceleration

MIRAH S . ——— —

centripetal acceleration is the acceleration due to the change in direction of velocity vector, it points toward

the centre of circular path
consider motion along a circular path from A to B with constant speed v

under small (infinitesimal) duration of time A#*

A more rigorous derivation can be given by using differentiation techniques

A8
change in velocity: Av =2vsin - vAf  (as AO — 0, sinAB = A6)

. Av
acceleration: a= —=v—=v0w (asw=—
. _Ar At ‘ .
consider motion along a circular path from A to B with constant speed v
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IATpX TAE=E
B 2 5 n 8
' " % 'i'ﬁ [=] \\i
recall relation v = wr, we
acceleration: A )
-- —\/’(! = ’\U

find centripetal
° \
1

v,
ac=—=0°r
r \
. . . \ !
> direction of centripetal accel- 3 v
1 1 1
1
- 5 <l<1 Av
A v

eration: always towards centre
\ 1
1 1
‘AG,

of circular path
> centripetal acceleration is

only responsible for the change

in direction of velocity
change in magnitude of velocity
r

will give rise to tangential accel-

eration
this is related to angular acceleration!! , which is beyond the syllabus

.

[ %) 518% ]

maintains a constant speed during the turn. (a) What is the angular velocity of the car? (b) What is the

A racing car makes a 180° turn in 2.0 s. Assume the path is a semi-circle with a radius of 30 m and the car

centripetal acceleration?

Il

1.2 centripetal force
circular motion must involve change in velocity, so object is not in equilibrium

there must be a net force on an object performing circular motion

_EEEEE

centripetal force (F,) is the resultant force acting on an object
> moving along a circular path, and it is always directed towards centre of the circle

> centripetal force causes centripetal acceleration
d v?
using Newton's 2" law: | F, = m— = mw’r
r

v

F. is not a new force by nature, it can have a variety of origins
F. is a resultant of forces you learned before (weight, tension, contact force, friction, etc.)
77T TN planet

F. acts at right angle to direction of velocity
or equivalently, if Fret L v and Fpet is of constant magnitude
’ gravity

then this net force provides centripetal force for circular motion

¢

#3513 > effect of Fc: change direction of motion, or maintain circular
. star ,
7
/

orbits
to change magnitude of velocity, there requires a tangential com-
do  d%0
— (%).

ponent for the net force
dr  dr2

mAngular acceleration is analogous to linear acceleration a, defined as rate of change of angular velocity: a =

d
Similar to v=wr = —s, the relation a=ar = d—l; also holds.
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#3]4 again the idea of tangential force is beyond the syllabus

planet orbiting around a star

gravity by the star provides centripetal force for the planet

A rock is able to orbit around the earth near the earth’s surface. Let’s ignore air resistance for this

question, so the rock is acted by weight only. Given that radius of the earth R = 6400 km.

(a) What is the orbital speed of the rock? (b) What is the orbital period?
muv?

R
orbital speed: v=+/gR=V9.81 x6.4x106~7.9x10° ms~!

. 27R 2w x6.4x108
period: T=——=—————
v 7.9x%x10

# weight of object provides centripetal force: mg =

~5.1x10% s~ 85 min O

Fp&ﬂﬁﬁﬁ : A turntable can rotate freely about a vertical axis through its centre. A small object is placed
! n the turntable at distance d = 40 cm from the centre. The turntable is then set to rotate, and the angular speed
of rotation is slowly increased. The coefficient of friction between the object and the turntable is = 0.30. If
the object does not slide off the turntable, find the maximum number of revolutions per minute.

4 if object stays on turntable, friction provides the centripetal force required: f = mw?®d

increasing w requires greater friction to provide centripetal force

but maximum limiting friction possible is: fij, = uN = umg, therefore

0.30 x 9.81
f=fim = mow’dspmg = w<”dg = wmax=\/Wz2.7lrads_l

. . 2m 2n
period of revolution: Typin = —— = — =2.32s
Wmax 2.71

umber of revolutions in one minute: o = —— = —— ~25.9

— [ EER

A e
Particle P of mass m = 0.40 kg is attached to one end of a light inextensible

string of length r = 0.80 m. The particle is whirled at a constant angular speed - R
w in a vertical plane. (a) Given that the string never becomes slack, find the e TAIl
minimum value of w. (b) Given instead that the string will break if the tension , 3
is greater than 20 N, find the maximum value of w. / '

I
# at top of circle (point A): Fp=Ta+mg=mw*r = Ta=mw’r—mg ! o) |

at bottom of circle (point B): F. = Tg—mg=mw*r = Tp=mw’r+mg \ '

tension is minimum at A, but string being taut requires T = 0 at any point, so ' Tg /
T4A=0 AN ’

mwzr—mg>0 = w>— S -

B
wmm—\/ ~35rads

tension is maximum at B, but string does not break requires T < Trnax, SO Tp < Tmax

T;
mw2r+mgs Thmax = w? < X _&
m r
TmaX 9.81 1
) = —— ———=6.1rads
max = r Vo040 080
# vertical component of tension T, equals welght
T,=mg = TcosO=mg
y
mg  0.12x9.81 ball
T= = ~13N
cosf c0s25°

net force equals horizontal component of tension Ty
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so component Ty provides centripetal force
. mv?
F.=T, = Tsinf=——
r
by eliminating T and m, one can find
, rtanf 0.10 x tan25°
v = =

9.81
When the ball reaches lowest point, find its speed and the tension in the string in terms of m and 1.

v~0.069ms! O

| mx543

# energy conservation: G.PE. loss = K.E. gain

——e
mgr = Emv2 = v=,/2g4r

' 2 - k
at lowest point: Fop=T-mg=m— ,
r ’
v? 2gr it
T:mg+m7:mg+mT:3mg a L
Question 1.1 Suggest what provides centripetal force in the following -
cases. (a) An athlete running on a curved track. (b) An aeroplane bank- mg

ing at a constant altitude. (c) A satellite moving around the earth.

Question 1.2 A turntable that can rotate freely in a horizontal plane is covered by dry mud. When the angular speed
of rotation is gradually increased, state and explain whether the mud near edge of the plate or near the mud will first
leave the plate?

Question 1.3 A bucket of water is swung at a constant speed and the motion describes a circle of radius r = 1.0m in
the vertical plane. If the water does not pour down from the bucket even when it is at the highest position, how fast

do you need to swing the bucket?

%> (&M 1). Question

This question is about the design of a roller-coaster. We

consider a slider that starts from rest from a point P and
slides along a frictionless circular track as sketched below.
P is at the same height as the top of the track T. (a) Show
that the slider cannot get to T. (b) As a designer for a

roller-coaster, you have to make sure the slider can reach

point T and continue to slide along the track, what is the

minimum height for the point of release?

Question 1.4 A turntable that can rotate freely in a horizontal plane is covered by dry mud. When the angular speed
of rotation is gradually increased, state and explain whether the mud near edge of the plate or near the mud will first
leave the plate?

Question 1.5 A bucket of water is swung at a constant speed and the motion describes a circle of radius r = 1.0m in
the vertical plane. If the water does not pour down from the bucket even when it is at the highest position, how fast

do you need to swing the bucket?

o AR ] L
Newton’s law of gravitation states that gravitational force between two point masses is proportional to the
q q ] %o A Mm
product of their masses and inversely proportional to the square of their distance | Fgray < —5—
-
L
O |

this law was formulated in Issac Newton’s work ‘The Principia’, or ‘Mathematical Principles of Natural Philoso-
phy’, first published in 1687
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&

2E CHAPTER 2
Gravitational Fields

2.1 gravitational forces

2.1.1 Newton’s law of gravitation

any object attracts any other object through the gravitational force

i
F, grav
/ .
M

gravitational attraction between M and m

Newton’s law of gravitation states that gravitational force between two point masses is proportional to the
Mm )

product of their masses and inversely proportional to the square of their distance (Fgrav X ——
’

this law was formulated in Issac Newton’s work ‘The Principia’, or ‘Mathematical Principles of Natural Philoso-
phy’, first published in 1687

GMm
mathematically, gravitational force takes the form: E

G=6.67x10""" N m? kg2 is the gravitational constant
> gravitational force is always attractive
> gravity is universal, i.e., gravitational attraction acts between any two masses
> Newton’s law of gravitation refers to point masses
i.e., particles with no size, therefore distance r can be easily defined
> a sphere with uniform mass distribution (e.g., stars, planets) can be treated
as a point model
distance r is taken between centres of the spheres %! M
(see Example 2.8, field lines around a planet seem to point towards centre

of planet) .

V______w

<
<

Example 2.1 The Earth can be thought as a uniform sphere of radius R = 6.4 x

10° m and mass M = 6.0 x 10°* kg. Estimate the gravitational force on a man of 60 kg at sea level.
GMm _6.67x107"1 x 6.0 x 10** x 60
= = =~ 586 N g
R? (6.4 x 10%)2
Question 2.1 Estimate the gravitational force between you and your deskmate.

#y

[2This is known as shell theorem: a spherically symmetric shell (i.e., a hollow ball) affects external objects gravitationally as
though all of its mass were concentrated at its centre, and it exerts no net gravitational force on any object inside, regardless of the

object’s location within the shell. (x)
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2.1.2 planetary motion

a planet/satellite orbiting around a star/earth

a planet/satellite can move around a star/earth in circular orbit
circular motion requires centripetal force
for these objects, gravitational force provides centripetal force
M 2 GMm
Fograv=F; = & Zm:ﬂ or 3 = mw?r
r r r
Example 2.2 GPS (Global Positioning System) satellites move in a circular orbits at about 20000 km above the earth’s
surface. The Earth has a radius R = 6.4 x 10 m and mass M = 6.0 x 10* kg. (a) Find the speed of GPS satellites. (b)

Find its orbital period.

# GMm _ mv? GM _ [6.67x10"!1 x6.0x10% 3. 1
=— ~39x10°ms
r2 r 6.4 x 106 + 2.0 x 107
27y 2nr _ 2n x (6.4 x 10% +2.0 x 107) s
v=— = T= ~4.3x10% s = 11.8 hours O
T 3.9x103

v
Example 2.3 A geostationary satellite moves in a circular orbit that appears motionless to ground observers. The
satellite follows the Earth’s rotation, so the satellite rotates from west to east above equator with an orbital period of
24 hours. Find the radius of t}(l;is orbit.

Mm ) GMm 2m\? ;5 GMT?
# S = mwtr = s E=ml—|r = =
r r T 4
GMT?\'"®  (6.67x 10711 x 6.0 x 1024 x (24 x 3600)2 "/ .
= 5 = > ~4.23x10'm O
47 47

Example 2.4 Assuming the planets in the solar system all move around the sun in circular orbits, show that the

square of orbital period is proportional to the cube of orbital radl
q p p GPM %S

2 GMm . 4me 4
# s— =mor = s—=m r o> T°=——-r
r r ) T GM
. ce s . 4w~
Gis grav1tat10nal constant, M is mass of the sun, so W 1s a constant, so T 2x 1 O

Question 2.2 Given that it takes about 8.0 minutes for light to travel from the sun to the earth. (a) What is the mass
of the sun? (b) At what speed does the earth move around the sun?

2.1.3 apparent weight

an object’s actual weight is the gravitational attraction exerted by the earth’s gravity

an object’s apparent weight is the upward force (e.g., normal contact force exerted by ground, tension in a spring
balance, etc.) that opposes gravity and prevents the object from falling

apparent weight can be different from actual weight due to vertical acceleration or buoyancy

but if we consider rotation of the earth, this also causes apparent weight to be lessened

[3]This is known as Kepler’s 3rd law for planetary motions. In the early 17th century, German astronomer Johannes Kepler
discovered three scientific laws which describes how planets move around the sun. This T 2 « r? relation not only holds for
circular orbits but are also correct for elliptical orbits.

Isaac Newton proved that Kepler’s laws are consequences of his own law of universal gravitation, and therefore explained why

the planets move in this way. (x)
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Npole A

apparent weight at various positions near earth’s surface (not to scale)

object resting on ground is actually rotating together with earth

resultant of gravitational force and contact force should provide centripetal force

. 2 2 GMm 2
for object on equator: Feeq=mw“R =  Fgray—Neqg=mMw R = Neq= = mw”°R
. GMm
for object at poles: Fipole =0 = Fgrav—Npole =0 = Npole = o

at lower latitudes, object describe larger circles, hence requires greater centripetal force

this offsets the balancing normal force, so apparent weight decreases near the equator
Example 2.5 A stone of mass 5.0 kg is hung from a newton-meter near the equator. The Earth can be considered
to be a uniform sphere of radius R = 6370 km and mass M = 5.97 x 10 kg. (a) What is the gravitational force on the

stone? (b) What is the reading on the meter?
GMm _ 6.67x107'! x5.97x10** x 5.0

R? (6.37 x 106)2 ~49.07N

#» gravitational force: Fgray =
2

b1
(24 x 3600)2
apparent weight, or reading on meter: N = Fgray — Fc =49.07-0.17 = 48.90 N O

centripetal force required: F, = mw?R=m (?) R=5.0x x6.37x10°~0.17 N

Question 2.3 Why astronauts in space stations are said to be weightless?
Question 2.4 How do you find the apparent weight of an object at an arbitrary latitude P? Does the apparent weight

act vertically downwards? Give your reasons.

2.2 gravitational fields

to explain how objects exert gravitational attraction upon one another at a distance, we introduce the concept of

force fields

gravitational field is a region of space where a mass is acted by a force ]

any mass M (or several masses) can produce a gravitational field around it

a test mass m within this field will experience a gravitational force

to describe the effect on a small mass m in the field, we will further introduce

- gravitational field strength, to help us compute gravitational force on objects
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- gravitational potential, to help us compute gravitational potential energy between objects

2.3 gravitational field strength

2.3.1 gravitational field strength

F grav

gravitational field strength is defined as gravitational force per unit mass: | g =

2

> unitof g: [g]=N kg_1 = m s~ “, same unit as acceleration

> field strength due to an isolated source of mass M

. . GMm
at distance r from the source, a test mass m is acted by a force: Fgray = =
E GM
field strength at this position: g = V- o g= =
m

note that the field is produced by the source M, so field strength g depends on M, not m
> field strength g is a vector quantity, it has a direction

gravitation is attractive, so g points towards source mass

to compute combined field strength due to several sources, should perform vector sum of contributions from each
individual
Example 2.6 Star A of mass 6.0 x 10°° kg and star B of mass 1.5 x 10°° kg are separated by a distance of 2.0 x 10'* m.
(a) What is the field strength at the mid-point P of the two stars? (b) If a comet of mass 4.0 x 10° kg is at the mid-point,

what force does it experience?

A 84 P 8B B
(5] > [+
d

# g4 acts towards A, gp acts towards B, they are in opposite directions

GM4s GM;p 1| 6.0x10% 1.5x 1030 4 0
=gi—gp=—1t— =6.67x107 ! x - =3.0x107" Nk
BP=8ATEE =TT T (1L0x 10122 (1.0 1012)2 8
force on comet: F=mg=4.0x 105x3.0x107* = 1.2x10° N |

2.3.2 acceleration of free fall

if field strength g is known, gravitational force on an object of mass m is: Fgray = mg

if the object is acted by gravity only, then Fret = Fgray = ma=mg = (4§ [4]

this shows gravitational field strength gives the acceleration of free fall!
Example 2.7 The earth has a radius of 6370 km. (a) Find the mass of the earth. 5] (b) Find the acceleration of free
fall at the top of Mount Everest. (height of Mount Everest H = 8.8 km)

4l Rigorously speaking, the two m’s are different concepts. There is the inertin mass, decribing how much an object resists the
change of state of motion. There is also the gravitational mass, describing the effect produced and experienced by the object in
gravitational fields. Yet no experiment has ever demonstrated any significant difference between the two. The reason why the two
masses are identical is very profound. We have shown here acceleration of free fall equals gravitational field strength, but Albert
Einstein’s equivalence principle suggests that it is actually impossible to distinguish between a uniform acceleration and a uniform
gravitational field. This idea lies at the heart of the general theory of relativity, where I should probably stop going further.

[BIBritish scientist Henry Cavendish devised an experiment in 1798 to measure the gravitational force between masses in his
laboratory. He was the first man to yield accurate values for the gravitational constant G. Then he was able to carry out this

calculation, referred by himself as ‘weighing the world’.
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# consider acceleration of free fall near surface of earth:

GM | g = SO7XI0DXM 102 k
= — 8l==—— ~5.97 x
8= e (6.37 x 100)2 &

at top of Mount Everest:
GM  6.67x107'" x5.97x10%*

= = ~9.78Nke ! = ayr=978ms2 |
SME= Ry H)?Z ~ (637 x 100+ 8.8 x 10%)2 & ME

2.3.3 gravitational field lines

gravitational field lines are drawn to graphically represent the pattern of field strength
> direction of field lines show the direction of field strength in the field
> spacing between field lines indicates the strength of the gravitational field

> gravitational field lines always end up at a mass
this arises from the attractive nature of gravitation

Example 2.8 field around the earth Example 2.9 field near earth’s surface

\\l//
X

— earth -

e N

/ T \ almost a uniform field

(field lines are parallel and equally spaced)

surface of earth

radial field (field lines normal to surface)

2.4 gravitational potential & potential energy

2.4.1 potential energy

potential energy is the energy possessed by an object due to its position in a force field
work done by force field decreases P.E., and work done against a force field increases P.E.

let W be work by the force field, then we have: | W = —AE)p

10
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to define potential energy of an object at a specific point X, we can
(1) choose a position where potential energy is defined to be zero
(2) find work done by force field to bring the object from zero P.E. point to X
(3) consider change in P.E.: AE), = Ep,x — Ep initial = Ep,x —0=Ep x
but AE, = -W, so P.E. at point X is found: Ep x = -W

so potential energy is equal to (negative) work done to move the object to a specific position

gravitational potential energy near earth’s surface

we may choose a zero G.P.E. point, for example, E,(0) =0 at sea level

if mass m is moved up for a height h, work done by gravity is W = —mgh!°!
this causes a change in gravitational potential energy AE, = -W = mgh
then at altitude i, G.P.E. can be given by E,(h) = mgh

2.4.2 gravitational potential energy

we are now ready to derive an expression for G.P.E. between two masses M and m

we define E), = 0 at r = oo (choice of zero potential energy, no force so no G.P.E.), then

gravitation potential energy is equal to the work done by gravitational force to bring a mass to a specific

position from infinity

consider a mass m at infinity with zero energy and a source mass M at origin

let’s find out how much work is done by gravitational force to pull m towards the origin

but Fgray varies as inverse square of separation x
so here we need to evaluate work done by a non-constant force

we can plot a F-x graph, then magnitude of work done equals area under the graph
© GMm GMm|* GMm
5 dx=- =
x x

r

integratem to evaluate the area: W = f
.

r

(ol Negative sign because this is actually work against gravity.
final
7ln general, work done by a non-constant force over large distance is W = [ 1F dx.
initia
For our case, x is the displacement away from the source, but gravitational force tends to pull the mass towards the source. F

and x are in opposite directions, a negative sign is needed for F. Therefore the work done by gravity to bring mass m from infinity

. r r( GMm GMm|" GMm
1s:W:f Fdx:f -— dx=+ = .
oo e} X X r

oo

11


http://www.latexstudio.net

IXTRX TAE=E 2 GRAVITATIONAL FIELDS

GMm
NEp=-W = Ep(n)-Eploo)=-———
GM
but we have defined Ej,(c0) = 0, therefore: | E,(r) = —Tm

E,(r) gives G.P.E between masses M and m when they are at distance r from each other
> as r — oo, E — 0, this agrees with our choice of zero G.P.E. point
> potential energy is a scalar quantity (negative sign cannot be dropped)
> G.PE. is always negative, this is due to attractive nature of gravity
to separate masses, work must be done to overcome attraction
so G.P.E. increases with separation r, i.e., G.P.E. is maximum at infinity, which is zero
G.PE. between masses at finite separation must be less than zero
> E,=mghis only applicable near earth’s surface where field is almost uniform
Ep=-
Example 2.10 A meteor is travelling towards a planet of mass M. When it is at a distance of r; from centre of M, it

m. o . [8]
is a more general formula for gravitational potential energy

moves at speed v;. When it is r, from M, it moves at speed v,. Assume only gravitational force applies, establish a

relationship between these quantities.

=-—mvy+|-———— O
n 2 T

GMm ) 1, GMm
2
Example 2.11 If an object is thrown from the surface of a planet at sufficiently high speed, it might escape from the

. 1
# energy conservation: K.E. +G.PE. = const = 3 mv? + (—

influence of the planet’s gravitational field. The minimum speed required is called the escape velocity. Using the data
from previous examples, find the escape velocity from the surface of earth.
# assuming no energy loss to air resistance, then total energy is conserved

K.E.+G.PE. at surface of planet = K.E. + G.P.E. at infinity

1, ( GMm) 1, v20  , 2GM 2GM
-mu +|—-————|=-mv-+0 u-= > Umpmin=\/—
2 R 2 R R
. 2x6.67x1071! x 6.0 x 1024 4 1
for earth, escape velocity umin = ~1.12x10°ms O

6.4 x 10°
Question 2.5 A planet of uniform density distribution is of radius R and mass M. A rock falls from a height of 3R

above the surface of the planet. Assume the planet has no atmosphere, show that the speed of the rock when it hits

3GM
the ground is v = TR
Question 2.6 A space probe is travelling around a planet of mass M in a circular orbit of radius r. (a) Show that the

2GMm

total mechanical energy (sum of kinetic energy and gravitational energy) of the space probe is Ejyta = — .(b) If
the space probe is subject to small resistive forces, state the change to its orbital radius and its orbiting speed.

Question 2.7 A black hole is a region of spacetime where gravitation is so strong that even light can escape from it.
For a star of mass M to collapse and form a black hole, it has to be compressed below a certain radius. (a) Show that
this radius is given by Rs = %/1, known as the Schwarzschild radius®). (b) Show that the Schwarzschild radius for

the sun is about 3 km.

GMm .
[8]0ne can recover AEp = mgAh from Ep = ————. Near the earth’s surface, if r; = r, = R, and 11 > rp, then we have: AEp =
r

1 1 r—ro GM g=GM/R?
Ep(r) —Ep(r2) =-GMm|—-—|=GMm———==m Ar =———= mgAh.

rnor rra ra
lWhen you deal with very strong gravitational fields, Newton’s law of gravitation breaks down and effects of Einstein’s general
theory of relativity come into play. The radius of a Newtonian black hole being equal to the radius of a Schwarzschild black hole is a

mere coincidence.
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2.4.3 gravitational potential

it is useful to introduce a quantity called potential at a specific point in a gravitational field
E

gravitational potential can be considered as the potential energy per unit mass: ¢ = —
m

gravitational potential at a point is defined as the work done to bring unit mass from infinity to that point

> unit: [p] =] kg™
> gravitational potential due to an isolated source M DA

E _GMm GM
:—p: r = (p:__
m m r

> potential at infinity is zero: ¢o, =0

this is our choice of zero potential point
> gravitational potential is a scalar

combined potential due to several masses equals scalar sum of poten-
tial of each individual

> gravitational potential is always negative

again this arises from attractive nature of gravity

work is done to pull unit mass away from source

farther from source means higher potential
Example 2.12 A star A of mass M4 = 1.5x 10°° kg and a planet B of mass
Mg =6.0 x10%° kg form an isolated astronomical system. Point P is between A and B, and is at distance r4 = 2.0 x 10'2
m from A, and distance rp = 8.0 x 10'* m from B. (a) Find the gravitational potential at P. (b) A meteor is initially at
very large distance from the system with negligible speed. It then travels towards point P due to the gravitational

attraction. Find its speed when it reaches P.

itati i GMy GMgp
# gravitational potential at P: ¢p=@as+¢p=|- - o=

A I'B
1.5 x 1030 . 6.0 x 1026
2.0x102 8.0 x 1010

1
gain in K.E. = loss in G.P.E.: Emv2 =mAp = V*=2(Qe—@p)=—20p

@p=-6.67x10"""x ( ) ~-5.05x10" J kg™

v=1-2x(-5.05x107) ~ 1.01 x 10* ms™" O
Example 2.13 The Moon may be considered to be an isolated sphere of radius R = 1.74 x 10> km. The gravitational
potential at the surface of the moon is about —2.82 x 10° Jkg™'. (a) Find the mass of the moon. (b) A stone travels
towards the moon such that its distance from the centre of the moon changes from 3R to 2R. Determine the change

in gravitational potential. (c) If the stone starts from rest, find its final speed.

6.67x107 N x M

GM
# atsurface: p(R)=——= = -2.82x 10%= => M=736%x10%kg

1.74 x 106
from 3R to 2R: A ( GM) ( GM) GM _ 2.82x10° 4.70x10° T kg™
rom 3R to 2R: Ap = - = e = 222 T L 470
P=9sr ~PeR 3R R 6R 6 g
note this change is a decrease in gravitational potential
1
gain in K.E. = loss in G.P.E.: Emv2 =mAp = v=\2Ap=V2x470x105~970ms O

Question 2.8 Given that the moon is of radius 1700 km and mass 7.4 x 10% kg. (a) Find the change in gravitational
potential when an object is moved from moon’s surface to 800 km above the surface. (b) If a rock is projected vertically
upwards with an initial speed of 1800 m s™! from surface, find the rock’s speed when it reaches a height of 800 km.
(c) Suggest whether the rock can escape from the moon’s gravitational field completely.
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&A =
35 CHAPTER 3
Oscillation
3.1 oscillatory motion
oscillation refers to a repetitive back and forth motion about its equilibrium position ]

the equilibrium position is a point where all forces on oscillator are balanced
release an object from its equilibrium position from rest, it will stay at rest

examples of oscillation includes pendulum of a clock, vibrating string, swing, etc.

3.1.1 amplitude, period, frequency

to describe motion of an oscillator, we define the following quantities:
> displacement (x): distance from the equilibrium position
> amplitude (xp): maximum displacement from the equilibrium position
> period (T): time for one complete oscillation

> frequency (f): number of oscillations per unit time

1
frequency is related to period as:

displacement x varies with time ¢ repetitively, for which we can plot an x-¢ graph

amplitude x and period T are labelled on the graph

XA

X0

~Y

F-------°
[ A

Y

displacement-time graph for a typical oscillator

3.1.2 phase angle

the point that an oscillator has reached within a complete cycle is called phase angle (¢)
> unit of phase angle: [¢] =rad

it looks like an angle, but better think of it as a number telling fraction of a complete cycle
> we use phase difference A¢ to compare how much one oscillator is ahead of another

A¢ is found in terms of fraction of an oscillation: A¢p = % x 27 (also measured in radians)

Example 3.1 Compare the two oscillations from the x-t graph below.

14
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x/cm .
20! #» both have period T =60 ms
1
frequency f= ———— =16.7 Hz
10 quency = g 103 =
they are of different amplitudes
0 > one has xg = 15 cm, the other has xg =20 cm
10 20 30\ 40 5! 0 t/ms
time difference: At =20 ms
-10
. At 20 2n
phase difference: A¢ = — x2m = — x 27 = — rad
220 T 60 3

3.1.3 acceleration & restoring force

for any oscillatory motion, consider its velocity and acceleration at various positions

its acceleration must be always pointing towards the equilibrium position

resultant force always acts in the direction to restore the system back to its equilibrium point, this net force is
known as the restoring force

if at equilibrium position, then no acceleration or restoring force

3.2 simple harmonic oscillation

if an oscillator has an acceleration always proportional to its displacement from the equilibrium position,
and acceleration is in opposite direction to displacement, then the oscillator is performing simple harmonic

motion

many phenomena can be approximated by simple harmonics
examples are motion of a pendulum, molecular vibrations, etc.
complicated motions can be decomposed into a set of simple harmonics

simple harmonic motion provides a basis for the study of many complicated motions [1°!

3.2.1 equation of motion

defining equation for simple harmonics can be written as | g = —w?x

w is some constant, so a is proportional to x

the minus sign shows a and x are in opposite directions

general solution to this this equation of motion!!!! takes the form: [ x = xosin(@? +¢)

Xp represents the amplitude, w is called the angular frequency, ¢ is the phase angle
angular frequency

2m
> angular frequency satisfies the relation: | w = == 2nf

> unit of angular frequency: [w] = rad-s™!

> angular frequency w is determined by the system’s physical constants only
if an object is set to oscillate freely with no external force, its period will always be the same

frequency of an free oscillatory system is called the natural frequency

101 This can be done through a mathematical technique known as Fourier analysis. For example, a uniform circular motion can be

considered as the combination of two simple harmonic motion in x- and y-directions.
2
. . . . . X
Mlyou probably know that acceleration can be written as the second derivative of displacement: a = 2 s0oa=-w
d?x
de?
study this in an advanced calculus course.

%x is equiv-

alent to +w?x =0, which a second-order differential equation. If you do not know how to solve it, you may have the chance to
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phase angle

> phase angle ¢ is dependent on initial conditions (e.g. initial position and initial speed at ¢ = 0?)
> in many cases, phase angle term can be avoided if a suitable trigonometric function is chosen
Example 3.2 A simple harmonic oscillator is displaced by 6.0 cm from its rest position and let go at ¢ = 0. Given that

the period of this system is 0.80 s, state an equation for its displacement-time relation. x,
2 2m 57w 1

A
# angular frequency: w = T 080-2" rad s
initial displacement x(0) = +X0 =6.0 cm \ /\ /

for displacement-time relation, we use cosine function \/ \/ >
5m
x(t) = xpcoswt = sz.Ocos(;t) O

Example 3.3 A simple harmonic oscillator is initially at rest. At ¢ =0, it is given

an initial speed in the negative direction. Given that the frequency is 1.5 Hz and the amplitude is 5.0 cm, state an

equation for its displacement-time relation. X5
# angular frequency: w =2nf =27 x 1.5=37 rad s~
initial displacement x(0) =0 /\ /\
for displacement-time relation, we use sine function >
x(f) =—xpcoswt = x=-5.0sin(37?) O \/

3.2.2 examples of simple harmonics
mass-spring oscillator

a mass-spring oscillator system consists of a block of mass m and an ideal spring

F
(_
! 1
m L4 m !
: .
1 1 > +
0 X
F
_—
k ===
! 1
' m ----4m
: |
L 1 > +
—-X 0

restoring force acting on the ideal mass-spring oscillator

when a spring is stretched or compressed by a mass, the spring develops a restoring force
magnitude of this force obeys Hooke’s law: F = kx
direction of this force is in opposite direction to displacement x
take vector nature of force into account, we find
Fret=ma = —-kx=ma = az—gx
spring constant k and mass m are constants, so a o x
negative sign shows a and x are in opposite directions

so mass-spring oscillator executes simple harmonic motion

. k k
compare with a = —0’x > *=— = |p=1/=
m m
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. . . 2n m
period of mass-spring oscillator: T=— = T =2m/—

w
> period and frequency are solely determined by mass of oscillator m and spring constant k
identical mass-spring systems will oscillate at same frequency no matter what amplitude
> m] = T/, greater mass means greater inertia, oscillation becomes slower

> k= T\, greater k means stiffer spring, greater restoring force makes oscillation go faster

simple pendulum

a simple pendulum is set up by hanging a bob on a light cord from a fixed point
displace the bob by some angle and release from rest, it can swing freely
one can show this performs simple harmonic motion for small-angle oscillation
if angular displacement 6 is small, then the pendulum has almost no vertical
displacement, the motion can be considered to be purely horizontal

. cosf=1 as 6—0
vertically: Tcos@ x mg ————= T=mg

inf=x/L
horizontally: —T'sinf = ma T —%x
this shows simple pendulum undergoes simple harmonics

compare with defining equation for simple harmonics:

a=-0’x = o= g
L

period for a simple pendulum: | T = Zﬂ\/g

> period and frequency of a pendulum are determined by length of the string L
only
as long as angular displacement remains small, frequency does not depend on

amplitude

fix length L, then simple pendulum oscillates at same frequency no matter what
amplitude
> L/ = T/, longer pendulums oscillate more slowly
> g\ = T/,if there is no gravity (g =0), then the bob will not move at all (T — co)
Question 3.1 A cylindrical tube of total mass m and cross sectional area A floats upright in a liquid of density p.
When the tube is given a small vertical displacement and released, the magnitude of the resultant force acting on the
tube is related to its vertical displacement y by the expression: Fnet = pgAy. (a) Show that the tube executes simple
harmonic motion. (b) Find an expression for the frequency of the oscillation.
Question 3.2 A small glider moves along a horizontal air track and bounces off the buffers at the ends of the track.
Assume the track is frictionless and the buffers are perfectly elastic, state and explain whether the glider describes

simple harmonic motion.

3.2.3 velocity & acceleration

displacement of simple harmonic oscillator varies with time as: x = xpsin(wt + ¢)

from this displacement-time relation, we can find velocity and acceleration relations

velocity

to find velocity-time relation, let’s recall that velocity v is rate of change of displacement x

dx d
V== %0 sinwt+¢) = |v()=wxocos(wt+d)
by taking v* + w?x?, the sine and cosine terms can be eliminated, we find:

Vi +wix? = wzxg cos®(-++) + wzxé sin?(---) = wzx(z,
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this gives velocity-displacement relation: | v(x) = +w /x5 — x?

> at equilibrium position x = 0, speed is maximum: | Ymax = ®WXo

> when x = +x, oscillator is momentarily at rest: v =0

acceleration

acceleration-time relation is found by further taking rate of change of velocity v
a= % = %wxocos(wt+¢) > |a(t)=-w’x sin(wt + ¢)
this is actually unnecessary, if we compare this with x(¢) = xo sin(wt + ¢), we have: a = —w’x
we have recovered the definition for simple harmonics
(if ax x and in opposite directions to x, then simple harmonic motion)
so acceleration-displacement relation is given by the defining equation explicitly | a(x) = —w?x
> at equilibrium position x = 0, zero acceleration

> when x = +xp, acceleration is greatest: | amax = w?xo

let’s take x = xpsinwt as example, changes of x, v, a over time are listed below

: 1 1 3
time ¢ 0 7 T 5 T 7 T T
displacement: x = xpsinwt 0 +max 0 —max 0
velocity: v=wxpcoswt +max 0 —max 0 +max
acceleration: a = —w’x = —? Xosinwt 0 —max 0 +max 0
U aj,
+VUmax
*********** +amax
|
|
!
!
|
|
! +Xo
> 1 >
—Xo +Xxo X —Xo l X
|
|
|
|
|
—Omax |[----------°
—VUmax
velocity-displacement graph acceleration-displacement graph

Example 3.4 The motion of a simple pendulum is approximately simple harmonic. As the pendulum swings from
one side to the other end, it moves through a distance of 6.0 cm and the time taken is 1.0 s. (a) State the period and
amplitude. (b) Find the greatest speed during the oscillation. (c) Find its speed when displacement x = 1.2 cm.
# period: T=2x1.0=2.0s, and amplitude: xo = % x6.0=3.0 cm
angular frequency: w = 2% = ;—7:) =mrads™!
greatest speed: Vmax =wxp =7 x 3.0=94cms”
speed at 1.2 cm: v=wy/x2—x2=mx V/3.02-1.22~8.6 cm's~' O

Example 3.5 Given the x-t graph of a simple harmonic oscillator. (a) Find its speed at ¢t = 0. (b) Find its greatest

1

speed. (b) Find its acceleration at t=1.0 s.
“att=0,x=+x9 = v=0 (zero gradient)

x/cm

30 from graph: amplitude xo =30 cm, period T=4.0's

20 2 2n =® _1
angular frequency: w = T 173 rad s
10
0 N greatest speed: Umax = WA = z x30~47 cm s~
X 20  Fo s 2

-10
20 18
-30
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atr=1.0s,x=0 = a=0

(equilibrium position so no acceleration) a
Question 3.3 Assume the motion of a car engine piston is simple
harmonic. The piston completes 3000 oscillations per minute. The
amplitude of the oscillation is 4.0 cm. (a) Find the greatest speed.

(b) Find the greatest acceleration.

3.2.4 vibrational energy

consider the ideal mass-spring oscillator, its vibrational energy consists of two parts:

- 2_ 42
U=t/ x5-x* ]

1
2= “mw?A?cos? wt ——— Emwz(xg —x2)

1
- kinetic energy of the mass: Ey = Smv

_Jk
2 9%Vm 1 5,

1
- (elastic) potential energy in the spring: E,, = zkx

—mw-X
2
1
total energy of the oscillator: E=E¢+E, = |E=7 mw* x;

> although this formula is derived from the mass-spring model
E= lmwzxé can be used to compute vibrational energy of all simple harmonic oscillators
> for an ideal system, total energy remains constant
Ey and E), keep changing, one transfers into another, but total energy is conserved
> when x =0, E; = max, E, =0, vibrational energy is purely kinetic
E=Eimax = Emvfnax o O %mwzxg

> when x = +x¢, Ex =0, E, = max, vibrational energy is purely potential

1 w=\/% 1
E=Epmax= —kx(z) \/> —mwzxg
2 2
E Ey
0 Etotal E |
tota
EP
Ey
Ep
Ek‘ N
-Xo Xp X T T I3
2

vibrational energy of a mass-spring oscillator

Example 3.6 A block of mass 150 g at the end of a spring oscillates with a period of 0.80 s. The maximum displace-

ment from its rest position is 12 cm. Find the energy of the vibration,
1 1 2m 1
“ E=—mw2xg=—m(—) x(2,=§><0.15><

x0.122 ~6.7x1072 ] O
2 2 T 0.802
Question 3.4 An oscillator is given an energy of 20 mJ and starts to oscillate, it reaches an amplitude of 8.0 cm. If we

want to double the amplitude, find the vibrational energy required.

3.3 damped oscillations

total vibrational energy stays constant for an ideal system

but in reality, there are friction, resistance and viscous forces that oppose motion

amplitude of an oscillator decreases due to energy loss to friction, this is called damping
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3.3.1 light damping

for a lightly-damped oscillator, amplitude decreases gradually

oscillator will not stop moving back and forth after quite a few oscillations

XA

N exponential envelope

> decrease in amplitude is non-linear in time (exponential decay in many cases)

> frequency and period are (almost) unchanged

Example 3.7 An oscillator is composed of a block of mass m =250 g and a spring of k=1.6 N/cm. It is displaced by
5.0 cm from its rest position and set free. (a) What is its angular frequency? (b) what is the initial vibrational energy?

(c) After a few oscillations, 40% of its energy is lost due to damping. What is its new amplitude?

160 i
#» angular frequency: w = 025 ~25.3rads

energy of oscillator: E = Emw x5 = 5 x 0.25 x 25.3% x 0.050% = 0.20 J112]
E x(I)Z x(l)Z
since E o x§, so: T2 = 60%=— = Xx5=V0.6x0=v0.6x50=39cm O
X X
0
Question 3.5 A small toy boat of mass 360 g floats on surface of water. It is gently pushed down and then released.
During the fist four complete cycles of its oscillation, its amplitude decreased from 5.0 cm to 2.0 cm in a time of 6.0 s.

Find the energy loss.

3.3.2 heavy damping

if resistive forces are too strong, there will be no oscillatory motion
the system will return to the equilibrium position very slowly

this system is said to be heavily damped

3.3.3 critical damping

critical damping is the border between light damping and heavy damping
it occurs when system returns to equilibrium in shortest time without any oscillation
> critical damping is desirable in many engineering designs [13]

examples include door-closing mechanism, shock absorbers in vehicles and artillery, etc.

1 1
[12] An easier approach: E = Ekxg =5 160 x 0.050 = 0.20 J.

[13]When a damped oscillator is required, critically-damped system provides the quickest approach to equilibrium without over-
shooting, while lightly-damped system reaches the zero position quickly but continues to oscillate, and heavily-damped system

reaches zero position in very long time.
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critical damping heavy damping ideal (zero damping)

3.4 forced oscillations

3.4.1 free & forced oscillation

an oscillator moving on its own with no gain or loss of energy is called free oscillation
amplitude of the oscillation is constant, its frequency called natural frequency
an oscillator may also move under an external driving force, it is forced oscillation

frequency of forced oscillator tends to driving frequency after sufficiently long time

3.4.2 resonance

for a forced oscillation system, when frequency of driving force fyriving is close to natural frequency fhatural,

amplitude of oscillator increases rapidly

when driving frequency of external force equals natural frequency of the system, amplitude of the system

becomes maximum, this phenomenon is called resonance

X0 A 1

>

Jnatural e driving

resonance is achieved when fyriving = fnatural

(amplitude tends to infinity if no damping)

> practical application of resonance

- microwave oven — water molecules resonate at microwave frequency and vibrate greatly
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- MRI (magnetic resonance imaging) — precession of nuclei resonate at radio frequency, signals are processed to
image nuclei of atoms inside a human body in detail
- radio/TV — RLC tuning circuits resonate at frequency of signals being received
> possible problems caused by resonance
- buildings during earthquake — resonate at frequency of shockwaves and collapse
- car suspension system — going over bumps may give large amplitude vibrations

— bridges and skyscrapers — resonance due to wind conditions

3.4.3 damping & resonance

an oscillation system can be subject to both driving force and resistive force
resonance behaviour will be changed by damping effects
> damping decreases amplitude of oscillation at all frequencies
greater damping causes resonance peak to become flatter
engineering systems are often deliberately damped to minimise resonance effect

> damping also shifts resonance frequency (slightly reduced for light damping)

X0 5

fres N

light damping

heavy damping

1 >

f natural f driving

resonance effect for various damping conditions
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4 E CHAPTER 4
Ideal Gases

4.1 gas molecules

4.1.1 motion of gas particles

gas consists of a large number of molecules L

gas molecules move randomly at high speeds ° . > -
> randomness results from collisions of fast-moving molecules in the gas %

for an individual molecule, its velocity changes constantly as it col- » S ,
lides with other molecules .

for the gas at any instant, there is a range of velocities for molecules , 3 ol“\ .
> experimental evidence of random motion: Brownian motion *r o :

dust or smoke particles in air undergo jerky random motion (viewed . . .
motion of gas molecules in a container
through microscope)
this is due to collisions with gas molecules that move randomly
> speed of gas molecules depend on temperature

molecules move faster at higher temperaturel'*!

4.1.2 amount of molecules

there are a huge number of molecules in a gas
we introduce amount of substance to measure the size of a collection of particles

> unit of amount of substance: [n] = mol

[ one mole is defined as the amount carbon-12 atoms in a sample of 12 grams ]

> 1 mole of substance contains 6.02x10% particles
this number is called Avogadro constant: Ny = 6.02 x 10°° mol ™! [1%]
conversion between number of molecules and amount of substance:

> it is useful to introduce the notion of molar mass M

molar mass of a substance is defined as the mass of a given sample divided by the amount of substance:

m
M=—
n

mass of sample m
— amount of substance= —————,orn=—
molar mass M

molar mass M

r mo=—

,0
Avogadro constant Na

— mass of single molecule =

141 wWe will prove this statement later in this chapter.
[1511n 2018, TUPAC suggested a new definition of the mole, which is defined to contain exactly 6.02x10?® particles. This new
definition fixed numerical value of the Avogadro constant, and emphasized that the quantity ‘amount of substance’ is concerned

with counting number of particles rather than measuring the mass of a sample.
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Example 4.1 Find the number of molecules in 160 grams of argon-40 gas.

m 160 g
# amount of gas: n= — = ————— =4.0 mol
M 40 g mol
number of gas molecules: N = nN4 = 4.0 mol x 6.02 x 102 mol ™! = 2.41 x 10%* O

Question 4.1 Find the mass of a sample of uranium-235 that contains 6.0 x 10%° atoms.

4.1.3 pressure (qualitative view)

when gas molecules collide with walls of container and rebound, they are acted by a force
by Newton’s third law, gas molecules must exert a reaction force on container in return
contributions from many molecules give rise to a pressure
Example 4.2 If a gas is heated with its volume fixed, how does the pressure change?
# at higher temperature, gas molecules move faster
they will collide harder and produce a greater force upon each collision
they will also collide more frequently with the container
so pressure of the gas will increase O
Question 4.2 If you pump gas into a bicycle tyre, state and explain how the pressure changes.
Question 4.3 A fixed amount of gas is allowed to expand at constant temperature, state and explain how the pressure

changes.

4.2 ideal gas

4.2.1 ideal gas equation

a gas that satisfies the equation | pV =nRT |or | pV = NkT | at any pressure p, any volume V, and thermody-

namic temperature T is called an ideal gas

molar gas constant: R=8.31] mol ' K™!
Boltzmann constant: k=1.38x 1072 JK™!
values of R and k apply for any ideal gas, i.e., they are universal constants

> recall conversion between number of molecules and amount of substance: | N = nNy

. R
we have relation between the constants: R = kNy, or k= N_
. . . A
> one must use thermodynamic temperature in the equation

thermodynamic temperature is measured in kelvins (K), so it is also called the Kelvin scale!®!

273 R
= Tc(C)
+273

conversion between Kelvin temperature and Celsius temperature: | Tk (K)

real gases

real gas behaves ideally at sufficiently high temperature and low pressure
— at very low temperatures, real gas will condense into liquid or solid
— at very high pressures, intermolecular forces become important
however, under normal conditions (room temperature T = 300 K and standard atmospheric pressure p =~ 1.0 x

10° Pa), there is no significant difference between a real gas and an ideal gas

[16le will discuss in details about Kelvin scale in §4.4.1 and §?2.
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so ideal gas approximation can be used with good accuracy for most of our applications
Example 4.3 A sealed cylinder of volume of 0.050 m? contains 75 g of air. The molar mass of airis 29 g mol~!. (a)
Find the air pressure when its temperature is 30°C. (b) The gas is allowed to expand with its pressure fixed. Find the
temperature of the gas when the volume doubles.

m 75
# amount of gas: n=— = — =2.59 mol

M 29
nRT; 2.59x8.31 x(30+273
pressure at 30°C: p = —— = ( ) <1.30%10° Pa
1% 0.050
. n W 0
pressure fixed,so Vx T = = =2 = T,=2x(30+273)=606 K=333°C a
1 1

Example 4.4 A gas cylinder holding 5000 cm® of air at a temperature of 27 °C and a pressure of 6.0 x 10° Pa is used
to fill balloons. Each balloon contains 1000 cm? of air at 27 °C and 1.0 x 10° Pa when filled. (a) Find the initial amount

of gas in the cylinder. (b) Find the number of balloons that can be filled.
poV 9.0 x 10° x 5000 x 107°

# initial amount of gas in cylinder: ng = = ~1.203 mol
RT 8.31 x (27 +273)
, L pV _ 1.0x10° x5000 x 10~° [17]
final amount of gas in cylinder: n = — = ~0.201 mol
& Y remain = pr T T8 31 x (274 273)
, V,  1.0x10°x 1000 x 1076

amount of gas in each balloon: n}, = P’ _ ~ 0.040 mol

RT 8.31 x (27+273)
- i 1.203-0.201
number of balloons: N = -0 *remain _ =25 O
np 0.040

Example 4.5 A storage cylinder has a volume of 5.0 x 10~* m®. The gas is at a temperature of 300 K and a pressure of
4.0 x 10° Pa. (a) Find the number of molecules in the cylinder. (b) The gas molecules slowly leak from the cylinder at

a rate of 1.6 x 10'® s™!. Find the time, in days, after which the pressure will reduce by 5.0%.
poV _4.0x10°x5.0x107*

# initial number of molecules: Ny = = ~4.83x10%3
kT 1.38 x 10723 x 300
AN A
volume fixed, so N p SY_2P _50%
No  po
number of molecules escaped: AN =0.05 x 4.83 x 10*® = 2.42 x 10*
_ 2.42 x 10% 6
time needed: t = ————— = 1.51x10° s = 17.4 days a
1.6 x 1016

(7] Air will leave the cylinder to fill balloons only if pressure inside the cylinder is higher than pressure of the balloon. When the

two pressures become equal, no more balloons can be filled, there will be some air remain in cylinder.
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Question 4.4 Containers A has a volume of 2.5 x 1072 m®

contains a gas at a temperature of 17°C and pressure of
1.3x 10° Pa and . Another container B of same size holds a gas at same temperature and a pressure of 1.9x 10° Pa. The
two containers are initially isolated from each another. (a) Find the total amount of molecules. (b) The two containers
are now connected through a tube of negligible volume. Assume the temperature stays unchanged, find the final
pressure of the gas.

Question 4.5 The air in a car tyre can be assumed to have a constant volume of 3.0 x 1072 m® . The pressure of this
air is 2.8 x 10° Pa at a temperature of 25°C. The pressure is to be increased using a pump. On each stroke 0.015 mol of
air is forced into the tyre. If gas has a final pressure of 3.6 x 10° Pa and final temperature of 28°C. Find the number of

strokes of the pump required.

4.2.2 empirical laws

historically, the ideal gas law was first stated by Emile Clapeyron in 1834:

PV
for a fixed amount of gas, - = const

his work was based on the empirical Boyle’s law, Charles’s law, and Gay-Lussac’s law

we will next recover these laws from the ideal gas equation

Boyle’s law

Boyle’s law was discovered by Robert Boyle in 1662, based on experimental observations

if temperature T remains constant, then p
A

1
pV =const |, or P ox V
pressure p of gas is inversely proportional to volume V
> for a gas with fixed temperature: p;V; = po V>
> a thermodynamic process for which temperature is kept constant is called an pV = const
isothermal process

p-V relation for an isothermal process is shown

Charles’s law

Charles’s law was discovered by Jacques Charles in 1787, based on experimen-

tal observations

V A
ideal behaviour
273 . -200 [ -100 100 200 e
.- | | | | | g
I T T T T T -
0 100 200 300 400 s00 Ix/K

|4
if pressure p remains constant, then: e const |, or|( Vo T

i.e., volume V of gas is directly proportional to its temperature T

> proportionality relation only applies if Kelvin scale is used
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> a thermodynamic process for which pressure is kept constant is called an isobaric process
V-T relation for an isobaric process is shown

> Charles’s law implies that volume of gas tends to zero at a certain temperature
historically this is how the idea of absolute zero first arose

> as T — 0, a real gas condenses into solid

there will be deviation from ideal behaviour (dotted line)

Gay-Lussac’s law Py

Gay-Lussac’s law was discovered by Joseph Louis Gay-Lussac between 1800 and
1802

if volume V remains constant, then
%zconst ,or pox T

i.e., pressure p is directly proportional to temperature T

> a thermodynamic process for which volume is kept constant is called an isochoric

process, or isometric process
p-T relation for an isochoric process is shown

> behaviour of real gas again deviates from ideal behaviour (dotted line) as T — 0

4.3 Kkinetic theory of ideal gases

kinetic model of gases: a theory based on microscopic motion of molecules of a gas that explains its macroscopic

properties

4.3.1 assumptions of ideal gas model

.

kinetic theory of the ideal gas model is based on the following assumptions:
— gas molecules are in constant random motion
— intermolecular separation is much greater than size of molecules
volume of molecules is negligible compared to volume occupied by gas
— intermolecular forces are negligible
— collisions between molecules are perfectly elastic, i.e., no kinetic energy lost

— molecules travel in straight line between collisions

\. J

Example 4.6 A mass of 20 g helium-4 at a temperature of 37°C has a pressure of 1.2 x 10° Pa. Each helium-4 atom
has a diameter of 280 pm. (a) Find the volume occupied by the gas and the volume of atoms in this gas. (b) Compare
the two volumes, suggest whether this gas can be considered as an ideal gas.

m 2
# number of helium molecules: N =nN4 = i x Ny = 20 x 6.02 x 10?3 =~ 3.01 x 10%*

NEKT  3.01x10%* x 1.38 x 10723 x (37 +273) 3
volume of gas: Vgas = = ~0.107 m
p

1.2x 10°

4 4
volume of one atom: Vaom = —717> = §” x (140 x 107153 2 1.15x 1072 m?

3
volume of all atoms: Vatoms = NVatom = 3.01 x 10%4 x 1.15x 1072 m® = 3.46 x 107> m®

Veas > Vatoms, SO this gas can approximate to an ideal gas O

4.3.2 pressure (quantitative view)

we are ready to derive a formula for pressure due to ideal gas
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pressure of gas is due to collision of gas molecules with container
let’s first consider the effect of one single molecule moving in one dimension only, and then generalise the result

to a gas containing N molecules moving in all three dimensions

A im
C o
: v

A
Y

one gas molecule moving in 1-D

let’s assume this single molecule only moves in x-direction (see figure)

change in momentum when colliding with wall: AP, = mv, — (-mvy) =2m vx[ls]

L. .. 2
time interval between collisions: At = —

Ux
. AP, 2muvy mVJZC
average force acting: F, = = =X
8 & At 5_1 l
F mv)zc myJZC
average pressure: py = — = = -
gep Px 2 A Px

generalisation to N molecules moving in 3-D
— N molecules so N times the contributions to pressure

but there is a distribution of speeds for N molecules, so should take average of v*

2 2

2
y+vz

— in three-dimensional space, we have: v* = v + v

2
but molecules have no preference in any specific direction, so: (v2) = (sz,) = (vl = oo

pressure should be shared equally among three dimensions: p = p, = py, = p;
Nm(v?)

therefore we find the pressure of an ideal gas is given by: | p = 3y

> (v?) is the mean square velocity of gas molecules

we can further define r.m.s. (root mean square) velocity: vims = m

gas molecules in random motion so there exists a range of velocities

we cannot tell exact velocity of a specific molecule, but can only tell mean values
> N is number of molecules, m is mass of one molecule

. Nm . .
then Nm gives total mass of the gas, and — 8ives gas density p

1
we can rewrite the pressure formula as: | p = 3P %

(pressure depends only on density and mean square speed of molecules)

> physical interpretation of the formula

N/ = more molecules, more collisions = p /
m ] = greater mass, greater force upon collision = p /
v/ = strike container harder, also more often = p /

V /' = spend more time in gas, less frequent collision with container = p\,

[18]In this section we use P for momentum of a particle and p for pressure of a gas to avoid confusion.
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4.3.3 kinetic energy

we now have two equations for ideal gases:
{ pV=nRT,or pV=NkT  ideal gaslaw
Nm (v?)
Y%
compare the two equations: pV = %Nm (v*y=NkT = m(* =3kT

pressure law

mean kinetic energy of a single molecule in a gas is: | (Ex) = %m (v?y = ng
mean K.E. of ideal gas molecules is proportional to its thermodynamic temperature
> useful relation for molecular speeds: | v2, o T
recall our statement in §4.1.1, higher temperature means higher speed for molecules
> we only talk about translational K.E. here
molecules have this energy because they are moving through space
total kinetic energy may also include rotational K.E. and vibrational K.E. !'°]
> (Ey) = ng gives the mean, or average K.E. per molecule
gas molecules exchange energies with each other upon collisions
for an individual molecule, its K.E. is not a constant
but mean K.E. is constant, which depends on temperature T only
> in a mixture of several gases, K.E. is shared equally among its components
this is because of repeated collisions between particles
though all molecules have same K.E., heavier molecules will move more slowly
Example 4.7 Air consists of oxygen (O, molar mass 32 g mol™!) and nitrogen (N2, molar mass 28 g mol™). (a)
Calculate the mean translational kinetic energy of these molecules at 300 K. (b) Estimate the typical speed for each
type of the molecule.
# mean K.E. of single molecule: (Ey) = ng = g x1.38x 107% x 300 = 6.21 x 102! J

1 3 1 M 3kNAT 3RT
(Bo)y=5m@h) = kT = o 2>_—kT > @H=AL -2
2 2 2 N4

M M
for oxygen molecule: vo, =/ 3x831x300 483 ms™!
0.032
for nitrogen molecule: vy, =/ % ~517ms™! O

Example 4.8 A cylinder container initially holds a gas of helium-4 at a temperature of 54°C. (a) Find the mean square
speed of these helium atoms. (b) If the temperature is raised to 540°C, find the r.m.s. speed of the atoms.

#> mass of one helium-4 atom: m =4u=4x1.66x 107 = 6.64 x 10"*" kg

3kT 3x1.38x 10723 x (54 +273)

at 54°C: m<u2>_—kT = (=" ~2.04 x 10° m? 572

6.64 x 10~27
UIZ T/ T/
note relation between vand T: (VW )x T = <(v_2)> = T = v;ms = T X Urms
540+ 273
at 540°C: vl = x V2.04x106~2.25x10° ms™! 0

544273
Question 4.6 A fixed mass of gas expands to twice its volume at constant temperature. (a) How does its pressure

change? (b) How does mean kinetic energy change?

Question 4.7 In order for a molecule to escape from the gravitational field of the earth, it must have a speed of

(191 There is an important result in classical thermal physics, known as the equipartition of energy theorem. It states that the average

1
energy per molecule is > kT for each independent degree of freedom. A molecule can move in three directions, corresponding to three

translational degrees of freedom, thus its mean translational kinetic energy is 3 kT. For a polyatomic gas (each molecule consists
of several atoms), apart from translational motion , it has additional rotational degrees of freedom and different vibrational modes,

so its average energy can be calculated by counting the total number of degrees of freedom.
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1.1x10° ms™! at the top of the atmosphere. (a) Estimate the temperature at which helium-4 atoms could have this
speed. (b) Helium atom actually escape from top of the atmosphere at much lower temperatures, explain how this is
possible.

TcCO) 4 TxkK)

4.4 thermal physics basics
100°C + 373K boilng water

44.1 temperature scales

298 K room temperature
273 K ice-water mixture

]
T

> Celsius scale (unit: °C)

]
T

25°C
0 : . . 0°C
0°C defined as temperature of ice-water mixture
100°C defined as temperature of boiling water
> Kelvin scale (unit: K)

0 K (absolute zero) is lowest temperature possible

> conversion rule: Tx(K) Tc(°C)

+273

> change of 1°C equals change of 1 K -196°C 77K liquid nitrogen

4.4.2 XKkinetic theory of matter -273°C + 0K  absolute zero

there are three common states of matter: solid, liquid and gas
they have very different physical properties (density, compressibility, fluidity, etc.)
but deep down, they are all composed of a large number of small molecules
in the kinetic theory of matter, we look at microscopic behaviour at molecular level (arrangement, motion,
intermolecular forces, separation, etc.)
microscopic behaviour of molecules cause differences in macroscopic properties of matter
— solid: molecules close together, tightly bonded, vibrate about their positions
— liquid: molecules quite close together, vibrate but has some freedom to move about

— gas: molecules widely separated, free from neighbours, move rapidly
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