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Finite element method

Finite element method (FEM) belongs to the family of Galerkin methods. In
FEM, continuous PDEs are converted to discrete (linear) systems.

Typical steps:
1 Convert strong-form PDEs to weak forms, using a test function w.
2 Integrate by parts to redistribute gradient operators.
3 Use the divergence theorem to simplify equations and enforce Neumann

boundary conditions (BCs).
4 Discretization (build the stiffness matrix and right-hand side).
5 Solve the (discrete) linear system.

Understanding FEM is important for many other discretization methods, including
the Material Point Method (MPM) later in this course.
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2D Poisson’s equation

Application: pressure projection in fluid simulations.
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Weak formulation

Arbitrary 2D test function w(x):

∇ · ∇u = 0 ⇐⇒ ∀w,
∫∫

Ω
w(∇ · ∇u)dA = 0

Intuitively:
1 ⇒: trivial
2 ⇐: if ∇ · ∇u(x) ̸= 0, we can always construct a test function w(x) s.t. ...
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Getting rid of second-order derivatives (I)
We want to get rid of ∇ · ∇ in

∇ · ∇u = 0.

Recall integration by parts, or derivative of products:

∇w · ∇u + w∇ · ∇u = ∇ · (w∇u) (1)

Since ∇ · ∇u = 0, we have

∇w · ∇u = ∇ · (w∇u) (2)

To summarize,

∇ · ∇u = 0 ⇐⇒ ∀w,
∫∫

Ω
∇w · ∇udA =

∫∫
Ω
∇ · (w∇u)dA. (3)
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Getting rid of second-order derivatives (II)

∫∫
Ω
∇w · ∇udA =

∫∫
Ω
∇ · (w∇u)dA (4)

Divergence theorem applied to the RHS:∫∫
Ω
∇w · ∇udA =

∮
∂Ω

w∇u · dn (5)
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Discretization (I) Basis functions

u(x) =
∑

j
ujϕj(x) (6)

Figure: Compusing 1D piece-wise linear functions using 1D Basis functions.
In this course we focus on linear basis functions, which means the fields are
exactly linear/bilinear/trilinear interpolated versions of the degrees of freedoms ui.
(Higher order basis functions are rarely used in graphics.)
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Discretization (I) Basis functions

Figure: 2D basis functions on a triangular mesh. Source:
https://www.comsol.com/multiphysics/finite-element-method
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Discretization (I) Basis functions

Figure: 2D basis functions on a triangular mesh. Source:
https://www.comsol.com/multiphysics/finite-element-method
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Discretization (I)

Figure: We use rectangular (quadrilateral) finite elements. Use your imagination to
visualize the basis functions :-)
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Discretization (II)
Now we represent u(x) as

u(x) =
∑

j
ujϕj(x), (7)

Recall that we wan to solve for u s.t.∫∫
Ω
∇w · ∇udA =

∮
∂Ω

w∇u · dn, (8)

Simple substitution gives

∀w,
∫∫

Ω
∇w · ∇

∑
j

ujϕj

dA =

∮
∂Ω

w∇u · dn. (9)

It’s sufficient to use only the basis function ϕi as test functions w:

∀i,
∫∫

Ω
∇ϕi · ∇

∑
j

ujϕj

dA =

∮
∂Ω

ϕi∇u · dn. (10)
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Discretization (III)

∀i,
∫∫

Ω
∇ϕi · ∇

∑
j

ujϕj

dA =

∮
∂Ω

ϕi∇u · dn. (11)

Extract
∑

j uj out of
∫∫

Ω:

∀i,
∑

j

(∫∫
Ω
∇ϕi · ∇ϕjdA

)
uj =

∮
∂Ω

ϕi∇u · dn (12)

In matrix form...

Ku = f (13)

K: “stiffness” matrix; u: degree of freedoms/solution vector; f: load vector
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Discretization (IV)

Now we need to compute Kij =
∫∫

Ω∇ϕi · ∇ϕjdA. Here we are using a simply
basis function so it’s not hard to compute analytically. (In more difficult cases
people use Gaussian quadrature).

9-point Laplacian stencil

−1 −1 −1
−1 8 −1
−1 −1 −1



15 / 29



Finite Elements
and Topology
Optimization

Yuanming Hu

FEM Overview

Discretizing
Poisson’s
equation

Discretizing
linear elasticity

Topology
optimization

Discretization (IV)

Recall the 5-point Laplacian stencil we obtained using finite difference in previous
lectures: 0 1 0

1 −4 1
0 1 0


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Boundary Conditions

Recall that our linear system is

∀i,
∑

j

(∫∫
Ω
∇ϕi · ∇ϕjdA

)
uj =

∮
∂Ω

ϕi∇u · dn (14)

Two types of boundary conditions
1 Dirichlet boundary conditions u(x) = f(x),x ∈ ∂Ω.

Easy: directly set corresponding ui = f(xi).
2 Neumann boundary conditions ∇u(x) · n = g(x),x ∈ ∂Ω

Plug g into the RHS of the equation, which yields non-zero entries in f.
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Linear elasticity FEM

Cauchy momentum equation:

Dv
Dt =

1
ρ
∇ · σ + g

v: velocity
ρ: density
σ : Cauchy stress tensor (symmetric 2/3D “matrix”)
g: body force (e.g., gravity)
Quasistatic state (v = 0), constant density, no gravity:

∇ · σ = 0

Degree of freedom: displacement u. Note that σ = σ(u) (more on this later).
Infinitesimal deformation: Lagrangian/Eulerian classification does not make sense.
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Index notation

Spacial axis x, y, z, . . . are uniformly represented as xα ,xβ ,xγ , . . .

Comma “,” means spatial derivatives. For example, σαβ ,γ =
∂σαβ
∂xγ

.

Vector notation v.s. index notation:

Dv
Dt =

1
ρ
∇ · σ + g ⇐⇒ Dvα

Dt =
1
ρ
∑

β

σαβ ,β + gα .

(σαβ ,β stands for ∂σαβ
∂xβ

.)
(In this lecture we do not use implicit summation for clarity.)
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Discretize Cauchy momentum equation using FEM
More difficult compared to Poisson’s problem: a) scalar v.s. vector; b) direct v.s.
extra linear mapping.
Weak form with test function: w(x) : R2 → R2:∑

β

σαβ ,β wα = 0,

Integration by parts:

∑
β

σαβ ,β wα +
∑

β

σαβ wα,β =
∑

β

(σαβ wα),β ⇒
∑

β

σαβ wα,β =
∑

β

(σαβ wα),β .

Divergence theorem:

∀α∀w,

∫∫
Ω

∑
β

σαβ wα,β dA =

∮
∂Ω

∑
β

(σαβ wα)dnβ . (15)
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Discretization

∀α∀w,

∫∫
Ω

∑
β

σαβ wα,β dA =

∮
∂Ω

∑
β

(σαβ wα)dnβ . (16)

Replace w and u with their discrete versions:

wα(x) =
∑

i
wiαϕiα(x), uα(x) =

∑
j

ujαϕjα(x) (17)

∀α∀i,
∫∫

Ω

∑
β

[σ (u(x))]αβ ϕiα(x)dA =

∮
∂Ω

∑
β

(σαβ ϕiα)dnβ . (18)
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Relating σ to u
From infinitesimal strain theory:
Strain tensor:

e =
1
2
(
∇u + (∇u)T)

Cauchy stress tensor:
σ = λ tr(e)I + 2µe

... or in index notation:

eαβ =
1
2
(
uα,β + uβ ,α

)
σαβ = λδαβ

∑
α

eαα + 2µeαβ

δαβ =

{
1, if α = β
0, if α ̸= β

In one word: here σ is a linear function of u.
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Building the linear system

σ is a linear function of u.

∀α∀i,
∫∫

Ω

∑
β

[σ (u(x))]αβ ϕiα(x)dA =

∮
∂Ω

∑
β

(σαβ ϕiα)dnβ . (19)

Again,
Ku = f

Stencil size: away from the boundary, how many non-zero entries are there per
row in the K matrix? 32 × 2 = 18 in 2D; 33 × 3 = 81 in 3D.

What does K look like?
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The 8 × 8 Ke matrix

After some transforms (e.g. strain-displacement matrix B, stress-train matrix E).
(Source: A 99 line topology optimization code written in Matlab1)

1O. Sigmund (2001). “A 99 line topology optimization code written in Matlab”. In: Structural
and multidisciplinary optimization 21.2, pp. 120–127.
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Topology optimization

The minimal compliance topology optimization problem can be formulated as:

min L(ρ) = uTK(ρ)u (20)
s.t. K(ρ)u = f (21)∑

e
ρe ≤ cV, (22)

ρe ∈ [ρmin, 1] (23)

L : measure of deformation energy, or the loss function
c : volume fraction (e.g., 0.3)
ρe : material occupancy (0 = empty, 1 = filled) of cell e.
V: total volume
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Topology optimization (Demo)

Check out the supplementary material for more details. Keywords: Solid Isotropic
Material with Penalization (SIMP), Optimility Criterion (OC)
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Narrow-band TopOpt on a sparsely populated grid

Optimizing 1, 040, 875, 347 FEM voxels2. [Bilibili]
2H. Liu et al. (2018). “Narrow-band topology optimization on a sparsely populated grid”. In:

ACM Transactions on Graphics (TOG) 37.6, pp. 1–14.
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