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RGB-D saliency detection aims to comprehensively use RGB images and depth maps to detect object sal-
iency. This field still faces two challenges: 1) how to extract representative multimodal features and 2)
how to effectively fuse them. Most of the previous methods in this field equally treat RGB and depth
information as two modalities, while not considering the difference in the frequency domain of the
two modalities, and may lose some complementary information. In this paper, we introduce the fre-
quency channel attention mechanism into the fusion process. First, we design a frequency-aware
cross-modality attention (FACMA) module to interweave adequate channel features and select represen-
tative features. In the FACMA module, we also propose a spatial frequency channel attention (SFCA) mod-
ule to introduce more complementary information in different channels. Second, we develop a weighted
cross-modality fusion (WCMF) module to adaptively fuse multimodality features by learning the content-
dependent weight maps. Comprehensive experiments on several benchmark datasets demonstrate that
the proposed framework outperforms seventeen state-of-the-art methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Salient object detection (SOD) aims to extract the most visually
distinctive regions from the background in an image [1,2]. SOD is a
widely used preprocessing tool that is beneficial for many visual
applications, such as object detection [3], image quality assess-
ment [4], image retrieval [5], image compression [6], image caption
[7], and video tracking [8].

When the texture and color of the background are similar to
those of the foreground, these algorithms cannot achieve satisfac-
tory results. Therefore, researchers integrate depth information as
auxiliary inputs to improve the performance of salient object
detection. Since depth sensors, such as Kinect, have become afford-
able and easily available, a large number of RGB-depth (RGB-D)
image pairs can be obtained. Thus, the RGB-D salient object detec-
tion (RGB-D SOD) problem has attracted increasing attention
[9,10].

Motivation. As shown in Fig. 1, some existing methods can
hardly obtain acceptable results in some challenging scenarios. A
careful review of the existing approaches for RGB-D SOD shows
that the following issues require further study and improvement
[11]:

(1) How to extract representative features from different
modalities. Although attention mechanisms are employed
for choosing the most representative features, most previous
RGB-D SOD schemes only focus on one type of attention
component [12]. The ability to select effective features in
the attention mechanism has not been fully explored. In
addition, most existing methods depend on spatial and
channel attention. How to select suitable features from other
perspective of the attention mechanism is still an open prob-
lem that has not been well studied in this visual task.

(2) How to preserve complementary features from different
modalities. Global average pooling (GAP) is a standard oper-
ation in several kinds of attention modules. However, its
ability to capture complementary information is not ideal
[13]. Unique characteristics in channel features may be lost
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Fig. 1. Some results of the proposed model and some state-of-the-art models. These
examples cover several challenging circumstances, including multiple objects,
complex objects, and poor-quality depth maps.
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in the process of calculating the mean value in the GAP oper-
ations. Thus, traditional attention mechanisms may not
attain satisfactory experimental results in RGB-D SOD.

(3) How to fuse these heterogeneous features. Fusion strategies
by concatenation or element-wise summation operation do
not consider the difference between two modalities. The
results of these fusion operations may even be worse than
those obtained using RGB information only, since some
low-quality depth maps may negatively affect the RGB fea-
tures [9]. Furthermore, these straightforward fusion opera-
tions do not take into account the content dependency of
the multimodality data and the nonlinear representation
ability of the network.

Contribution. Our core observation is that some previous cross-
modality fusion methods may not preserve all of the complemen-
tary information in channel features [13]. Since deep networks are
redundant, some channels may obtain the same information using
GAP. The multispectral framework can extract more information
from redundant channels because various frequency components
explore different information. The proposed framework consists
of three key modules: the frequency-aware cross-modality atten-
tion (FACMA) module, the spatial frequency channel attention
(SFCA) module, and the weighted cross-modality fusion (WCMF)
module. The main contributions of this article are as follows:

� A frequency-aware cross-modality attention network (FCMNet)
is proposed, which is an end-to-end architecture designed for
RGB-D SOD. Unlike previous methods that only consider spatial
and channel attention, the proposed method explores this task
from the perspective of the frequency domain. A novel network
module called frequency-aware cross-modality attention
(FACMA) is presented, which can extract discriminative features
while maintaining the complementary components.

� We also develop a weighted cross-modality fusion (WCMF)
module to adaptively incorporate multimodality features by
weighing their importance. Different from previous models that
lack cross-modal interactions and content dependency, our
module considers those factors, and weakens the effects of
low-quality depth information. Furthermore, using the nonlin-
ear feature enhancement (NFE) unit, we enhance the nonlinear
representation ability during the fusion process.

� We compare the proposed methods with 17 state-of-the-art
approaches on eight widely used datasets. Without any prepro-
cessing or postprocessing techniques, our method achieves the
best performance under four evaluation metrics. In addition,
extensive ablation studies are conducted, which demonstrate
the effectiveness of the proposed modules.
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The rest of the paper is organized as follows. Section 2 reviews the
related work on attention mechanisms and RGB-D SOD. Section 3
presents the proposed network and several novel network modules
designed in this work. In Section 4, in addition to elaborating the
datasets, evaluation metrics, and compared methods, we present
and analyze the experimental results. Finally, the conclusion sum-
marizes this paper in Section 5.
2. Related Work

In this section, we review some prior art closely related to our
work. These works can be divided into attention mechanisms
and salient object detection. We also point out several existing
problems in previous work that are addressed in this paper.

2.1. Attention Mechanism

The attention mechanism aims to focus on the features of inter-
ests and neglect interference, which has been widely applied in
computer vision tasks. The attention mechanism can be roughly
divided into three types: spatial attention, channel attention, and
the combination of spatial and channel attention.

Hu et al. [14] designed a squeeze-and-excitation (SE) block to
flexibly update channel-wise features by directly modeling the
relationship between the channels. Inspired by the SE block, Roy
et al. [15] introduced a concurrent spatial and channel squeeze &

excitation (scSE) module, which combines the channel and spatial
attention units in parallel. Woo et al. [16] presented a lightweight
and general module called the convolutional block attention mod-
ule (CBAM), which connects channel and spatial attention in series.
Park et al. [17] proposed a bottleneck attention module (BAM) to
indicate significant regions in a 3D attention map. Gao et al. [18]
constructed a global second-order pooling (GSoP) block. Given an
input tensor, the GSoP module first calculates the covariance
matrix, and then performs convolution and activation operations
to obtain the outputs.

Attention mechanisms are widely adopted in previous SOD
methods [19–24]. To generate attentive global features, Liu et al.
[20] proposed a multiscale global attention model for feature
fusion. In the work [19], an attention mechanism is introduced to
dynamically select the message propagation in graph neural net-
works (GNNs).

Although attention mechanisms have been employed for RGB-D
SOD, some previous methods only adopted a single type of atten-
tion module [12]. The effect of the combination of attention mod-
ules has not been well explored. Furthermore, in the global pooling
operation, which is widely used in the attention module, it is often
difficult to retain complementary information of different modali-
ties [13]. Thus, traditional attention components can hardly obtain
satisfactory results in cross-modal tasks. To solve these problems,
we design the FACMA module, which will be elaborated in
Section 3.1.

2.2. RGB-D Saliency Detection

Conventional RGB-D SOD methods usually regard the depth
map as another channel in addition to RGB. Niu et al. [25] first
introduced an additional depth cue for saliency detection from
stereoscopic images. Peng et al. [26] proposed a multicontextual
contrast approach for RGB-D SOD, and built the first large-scale
RGB-D dataset for salient object detection. Feng et al. [27] noticed
that high-contrast regions in the background may cause false pos-
itives, and they proposed local background enclosure (LBE) fea-
tures to solve this problem. Song et al. [28] presented an RGB-D
SOD approach based on multiscale discriminative saliency fusion
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(MDSF) and bootstrap learning. Cong et al. [29] proposed a depth-
guided transformation model (DTM), which consists of multilevel
RGBD saliency initialization, depth-guided saliency refinement,
and saliency optimization with depth constraints. However, the
abovementioned methods depend heavily on handcrafted features
and heuristic fusion, causing unsatisfactory results and a lack of
generalizability in challenging scenarios.

In recent years, deep learning has been widely applied in RGB-D
SOD [30–32]. Chen et al. [33] noticed the previous ambiguousness
of fusing cross-modal data and proposed a multiscale multipath
cross-modal interaction (MMCI) architecture for RGB-D SOD. Zhao
et al. [34] noted that backbone models pretrained on ImageNet
cannot extract optimal features from the depth channel, so they
combine contrast prior with fluid pyramid networks. Piao et al.
[35] presented an RGB-D SOD framework by residual connections
and recurrent attention module. Fan et al. [9] found that low-
quality depth maps affect the final results of RGB-D SOD, and con-
sequently designed a deep depth-depurator network (D3Net) to
automatically discard low-quality depth maps in the test phase.
Li et al. [36] proposed the cmMS block for fusing RGB image and
depth information adaptively. Zhang et al. [37] considered global
location and local detail complementarities from RGB and depth
modalities. In the work [38], a depth distiller (A2dele) is described
by minimizing the distances between feature maps of the depth
and RGB information. Liu et al. [22] proposed a novel unified model
for both RGB and RGB-D SOD based on a pure transformer. For the
first time, RGB-D SOD is solved from a new sequence-to-sequence
perspective. Zhang et al. [39] developed probabilistic RGB-D sal-
iency detection network based on conditional variational autoen-
coders, which models human annotation uncertainty and
produces multiple saliency maps for each input. Liu et al. [24] uti-
lized the self-attention to enhance longrange contextual depen-
dencies, and further designed a selection attention and a residual
fusion module to improve the performance.

Though the representation ability of deep learning is powerful
[40], the satisfactory fusion scheme of two modalities is still a dif-
ficult task. Depth maps contain more contours, while RGB images
convey rich detailed information, such as texture and color. The
development of an effective method for fusing the two modality
features with different statistical characteristics is vital for improv-
ing the performance of RGB-D SOD. Therefore, we introduce the
WCMF module to solve this problem. The details of this module
are presented in Section 3.2.
1 The codes and implementation details for the FCA layer are available at: https://
ithub.com/cfzd/FcaNet.
3. Methodology

The overall architecture of the FCMNet is a two-stream
encoder-decoder neural network, as shown in Fig. 2. The input of
the network is an RGB image I and a depth image D. We copy
the depth image into three channels to make it have the same
dimension as the RGB image, fI;Dg 2 RH�W�C , where H;W , and
C represent height, width and the number of channels, respec-
tively. The encoder consists of two symmetrical VGG-16 networks.
The output features of the RGB branch and depth branch in each
stage are defined as Fi

RGB and Fi
D, where i 2 f1;2;3;4;5g. These

feature maps are fed into a frequency-aware cross-modality atten-
tion (FACMA) module to obtain the corresponding enhanced fea-
tures Fi

RGBE and Fi
DE. The enhanced features are fed to a

weighted cross-modality fusion (WCMF) module to adaptively fuse
the multimodal features. Then, the fused features are input to the
subsequent cascaded decoder, which integrates multiscale features
progressively. The decoder is composed of four atrous spatial pyra-
mid pooling (ASPP) modules [41] to enrich the multiscale informa-
tion. These ASPP blocks are augmented with a dense connection,
which promotes the integration of depth and RGB features at dif-
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ferent scales. During training, the feature maps are supervised by
the ground truth and the edge ground truth. Note that we choose
the second stage in VGG-16 to embed the edge supervision infor-
mation, which is consistent with the previous work of RGB SOD
[42].

3.1. Frequency-Aware Cross-Modality Attention

As is known, RGB images and depth maps contain various infor-
mation. Depth maps contain more contours, while RGB images
convey rich detailed information, such as texture and color. Con-
ventional attention mechanisms based on GAP cannot maintain
all frequency components from different modalities [13]. To pre-
serve these complementary features, we analyze this problem from
the perspective of the frequency domain. We design an FACMA
module to automatically extract and strengthen complementary
information in different modalities. In the FACMA module, two
spatial frequency channel attention (SFCA) submodules are utilized
to capture complementary information from the spatial and fre-
quency domains. The feature maps of the RGB branch and depth
branch pass through two symmetrical SFCA modules and then
undergo elementwise multiplication to interweave different
modality information. This process can be formulated as:

Fi
RGBE ¼ SFCAðFi

RGBÞ �Fi
D; ð1Þ

Fi
DE ¼ SFCAðFi

DÞ �Fi
RGB; ð2Þ

where � represents elementwise multiplication and SFCAð�Þ is the
proposed spatial frequency channel attention module.

As shown in Fig. 3, the proposed FACMA module contains two
submodules called the SFCA module. Inspired by [15], we design
a spatial frequency channel attention (SFCA) module to capture
the complementary information from different modalities. As illus-
trated in Fig. 4, the SFCA module can be divided into two compo-
nents. The first is the spatial attention module, which is used to
accurately extract position information,

f 1 ¼ ðrðConv1�1ðf inÞÞÞ � f in; ð3Þ
where rð�Þ is the sigmoid function, Conv1�1ð�Þ represents the 1� 1
convolution operation, and � refers to elementwise multiplication.

The other is the frequency channel attention (FCA) module [13],
which is used to capture the response component of different
channels to the salient area. The process of the FCA module can
be described as:

f 2 ¼ FCAðf inÞ ¼ rðFCðReLUðFCðDCTðf inÞÞÞÞÞ � f in; ð4Þ
where rð�Þ is the sigmoid function, FCð�Þ denotes the fully connected
layer, ReLUð�Þ is the rectified linear unit (ReLU) activation, and
DCTð�Þ refers to the 2D discrete cosine transform (DCT), which out-
puts a matrix with the same size of the input. The 2D DCT is math-
ematically defined as follows:

DCTðf inÞ ¼
XH�1

x¼0

XW�1

y¼0

f in cos
ph
H

xþ 1
2

� �� �
cos

pw
W

yþ 1
2

� �� �
;

h 2 0;1; � � � ;H � 1f g;w 2 0;1; � � � ;W � 1f g; ð5Þ
where H and W are the height and width of the input feature map,
respectively. In [13], the authors proved that FCA module can pre-
serve richer features than the common channel attention module.1

Then, we use the element addition operation to combine the
two components. This process can be described as:

f out ¼ f 1 � f 2; ð6Þ
g



Fig. 2. The overall architecture of the FCMNet is a two-stream encoder-decoder neural network. The encoder consists of two symmetrical VGG-16 networks. The feature maps
of the RGB branch and depth branch in each stage are fed into a frequency-aware cross-modality attention (FACMA) module to obtain the corresponding enhanced features.
The enhanced features are fed to a weighted cross-modality fusion (WCMF) module to adaptively fuse the multimodal features. The decoder is composed of four atrous spatial
pyramid pooling (ASPP) modules. These ASPP blocks are augmented with a dense connection, which is represented by red lines. ‘‘�” and ‘‘"” represent the elementwise
addition and upsampling, respectively. During training, the feature maps are supervised by the ground truth and the edge ground truth. The ground truths and the input
images have the same resolution.

Fig. 3. The proposed frequency-aware cross-modality attention (FACMA) module.
In this figure, ‘‘�” represents the elementwise multiplication operation. In the i-th
stage, the dimension of feature maps inputted to FACMA is denoted as Hi �Wi � Ci .

Fig. 4. The proposed spatial frequency channel attention (SFCA) module. In this
figure, ‘‘�” and ‘‘�” represent the elementwise multiplication and addition,
respectively. In the i-th stage, the dimension of feature maps inputted to SFCA is
denoted as Hi �Wi � Ci .
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where � denotes elementwise addition and f out is the final output of
the SFCA module.

3.2. Weighted Cross-Modality Fusion

The previous multimodal fusion strategies in RGB-D SOD often
adopt elementwise summation or concatenation. Redundant and
misleading features are easily involved, thereby reducing the com-
plementarity between RGB images and depth maps. Meanwhile,
these methods ignore the image content information, which is of
great significance for salient object detection [43–45]. Moreover,
417
earlier work neglects the nonlinear representation ability of the
neural network during the fusion process. Thus, we propose the
weighted cross-modality fusion (WCMF) module to solve the
above problems.

The structure of the WCMF module is shown in Fig. 5. For brev-
ity, we first denote a nonlinear feature enhancement (NFE) unit
before introducing the WCMF module. The NFE unit is composed
of a convolutional layer, a batch normalization (BN) layer, and a
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rectified linear unit (ReLU) activation function. This unit can be
described as:

NFE1�1ð�Þ ¼ ReLUðBNðConv1�1ð�ÞÞÞ; ð7Þ
NFE3�3ð�Þ ¼ ReLUðBNðConv3�3ð�ÞÞÞ; ð8Þ

where Conv1�1ð�Þ and Conv3�3ð�Þ refer to the 1� 1 and 3� 3 convo-
lution, respectively. The WCMF module first uses the NFE operation
to enhance the two-stream input features and concatenates them:

�f 1 ¼ NFE1�1ðFi
RGBEÞ; ð9Þ

�f 2 ¼ NFE1�1ðFi
DEÞ; ð10Þ

�f 3 ¼ Cat½�f 1; �f 2�; ð11Þ

where Cat½�; �� denotes the concatenation operation. Then, we can
obtain two concatenated weight maps by the fused feature map �f 3:

½WR;WD� ¼ NFE3�3ðNFE3�3ð�f 3ÞÞ; ð12Þ
where WR and WD are the weight maps corresponding to RGB and
depth feature, respectively. Finally, the output of the WCMF module
is computed as:

�f out ¼ WR � �f 1 �WD � �f 2 �WR � �f 1 �WD � �f 2: ð13Þ
As suggested in [46], equipped with nonlinear representation ability
enhancement and adaptively content-dependent weight maps, the
proposed fusion module can capture complementary information
from different modalities. The NFE unit can strengthen the repre-
sentation properties of the neural networks. The weight maps can
assign different attention to feature maps in different modalities
and locations. Thus, the proposed fusion module can effectively
and adaptively fuse the representative features from different
modalities.

3.3. Decoder

As we can see in Fig. 2, the feature maps outputted from WCMF
modules have various resolutions and channel numbers. Therefore,
we compress the hierarchical features into the same channel num-
ber. After receiving features from the WCMF modules, the channel
numbers of these feature maps are all converted to 64. This chan-
nel reduction process is conducted by convolution and ReLU acti-
vation, which is denoted as the ‘‘CR” modules in Fig. 2. There are
two advantages of this attempt. First, a small number of feature
channels is friendly to memory usage and computational con-
sumption. Second, the same number of channels facilitates the ele-
mentwise operations.

By channel reduction and resolution upsampling, the output
channel numbers and resolutions in each ASPP module are com-
pletely identical with the input ones. In Fig. 2, the red lines denote
Fig. 5. The proposed weighted cross-modality fusion (WCMF) module. In this figure, ‘‘C
multiplication and addition, respectively. In the i-th stage, the dimension of feature ma
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dense connections. In each dense connection, the feature maps are
upsampled to keep the same resolutions.

3.4. Loss Function

To better preserve the salient edge features, we added addi-
tional edge supervision information in the second stage of the
decoder. It is widely accepted that low-level features tend to learn
boundary information. In the first stage of VGG-16, the convolution
layer is too close to the input and the receptive field is too small
[42]. Therefore, we extract edge features from the second stage
of the backbones. Since the positive and negative samples of edge
information are imbalanced, we use the cross-entropy loss with
weights [42], which is defined as:

Lð2ÞðE;GE;WLÞ ¼ �WL �
X
j

½GEj logðEjÞ þ ð1� GEjÞ logð1� EjÞ�;

ð14Þ
where j indicates the pixel index, E is the predicted feature map of
the edge, and GE is the ground truth of the edge. The weight is
defined as follows:

WL ¼ l � Eþ þ m � E�; ð15Þ

l ¼

X
j

E�

X
j

E� þ
X
j

Eþ
; ð16Þ

m ¼
1:1 �

X
j

Eþ

X
j

E� þ
X
j

Eþ
; ð17Þ

where Eþ and E� represent the salient edge and background pixel
set, respectively. In other stages, traditional cross-entropy loss is
used to calculate the loss between the predicted saliency map and
the ground truth, and is defined as:

LðiÞðS;GÞ ¼ �
X
j

½G logðSjÞ þ ð1� GÞ logð1� SjÞ�; i 2 f1;3;4;5g;

ð18Þ
where S is the predicted saliency map and G is the ground truth, i
indicates the index of stage in VGG-16 networks. Finally, the total
loss can be expressed as:

Ltotal ¼ Lð2ÞðE;GE;WLÞ þ
X
i

LðiÞðS;GÞ; i 2 f1;3;4;5g: ð19Þ

All the ground truths G and GE are of the same resolution as the
input images. To keep the resolution consistent, we upsample the
feature maps to the same size of the ground truths before comput-
” represents the concatenation operation. ‘‘�” and ‘‘�” represent the elementwise
ps inputted to WCMF is denoted as Hi �Wi � Ci .
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ing the loss in each stage. This process is conducted by bilinear
interpolations.
3.5. Discussion

(1) Discussion on the novelty of FACMA. Although attention
mechanisms have been widely used in RGB-D SOD, the proposed
FACMA module is inherently different from them in both motiva-
tion and structure. First, some previous literatures only consider
a single type of attention modules [12]. However, our model com-
bines the advantages of spatial and frequency channel attention.
Second, most of existing attention components are rely on the
GAP operation, which is incapable to extract the complex informa-
tion for various inputs [13]. For example, RGB images include more
high-frequency components, e.g., details, textures; while depth
maps contain more low-frequency components, e.g., flat areas. If
we only use GAP for cross-modality fusion, it is equivalent to the
lowest frequency components of DCT [13], ignoring many other
potentially useful frequency components. Thus, it will loss some
complementary information in RGB-D SOD. To alleviate this loss,
we reasonably embed the FCA layer into the current attention
mechanism. This attempt can preserve the unique characteristics
in channel features. As a result, the complementary information
from different modalities can be maintained.

(2) Discussion on the novelty of WCMF. In some previous
methods of RGB-D SOD, fusion modules are implemented by con-
catenation or elementwise summation operation. The results of
these fusion operations are often unsatisfactory, since the RGB fea-
tures may be contaminated by some low-quality depth maps [9].
To design a fusion strategy, we should consider the content depen-
dence between the two modalities. As mentioned in Section 3.2, by
calculating the weight maps WR and WD in Equ. 12, the WCMF
module can extract content correlated knowledge to guide the
fusion process. Furthermore, unlike some related works [46], we
not only study the content dependence between the two modali-
ties, but also consider the expression ability of deep learning. It
is well known in the computer vision community that the nonlin-
ear representation ability of neural networks can be enhanced by
the combination of a convolutional layer, a BN layer, and a ReLU
layer. In this paper, we insert these layers, which are denoted as
the NFE units for brevity, into the proposed fusion module. Based
on the above two considerations, our WCMF module can acquire
better results.
4. Experiments and Results

4.1. Set up

Datasets. We evaluate our method on eight benchmark data-
sets. NLPR [26] comprises 1,000 images from 11 types of indoor
and outdoor scenes. Of these, 650 images are used as the training
set, and the remaining images are used as the test set. RGBD135
[47] contains 135 image pairs from seven indoor scenes with only
one object in each image. This dataset is also called the DES dataset
in some reports in the literature. STEREO [25] consists of 1,000
pairs of binocular images with coarse depth quality, and the depth
images are generated by an optical method. NJUD [48] includes
1,985 image pairs collected from indoor/outdoor environments
and stereo movies. The depth maps are calculated from the stereo
images. In this dataset, 1,400 samples are used as the training set,
and the remaining samples are used as the test set. SSD [49] is a
small-scale dataset with 400 samples. These images are high-
resolution with the size of 960 � 1080. The quality of the corre-
sponding depth maps is relatively poor in this dataset. LFSD [50]
is composed of 100 all-focus RGB images, the corresponding depth
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maps captured by the Lytro light field camera, and the pixelwise
ground truth masks. This dataset is designed for light field saliency
detection. SIP [9] includes 929 images captured by Huawei Mate10
with high quality depth maps and annotations. The resolution of
samples is fixed to 992�744. ReDWeb-S [51] involves 3,179
images, which cover 332 scenes and 432 objects. The images in this
dataset usually have high depth quality and large object size.

Following the generally accepted setting in [9], we trained our
model on a combined subset. It consists of 1,400 samples from
the NJU2K [48] dataset and 650 samples from the NLPR [26]
dataset.

Evaluation Metrics. For quantitative comparison, we adopt
four widely-used metrics: S-measure (Sa;a ¼ 0:5) [52], max F-
measure (Fb; b

2 ¼ 0:3) [53], mean absolute error (MAE) [54] and
max E-measure (En) [55]. In the following definition, j denotes
the pixel coordinate.

MAE [54] measures the l1 distance between the predicted sal-
iency map S and the ground truth G and is defined as:

MAEðS;GÞ ¼ 1
K

XK
j¼1

Sj � Gj

�� ��; ð20Þ

where K is the total number of pixels.
The predictions are binarized with multiple thresholds for the

F-measure and E-measure. The F-measure Fb [53] computes the
harmonic mean of precision and recall, which is calculated as:

Fb ¼ ð1þ b2Þ � Precision� Recall
b2 � Precisionþ Recall

; ð21Þ

where b2 is set to 0.3 as suggested in previous work. This setting
will enhance the effect of precision. Considering that each binary
threshold will calculate a Fb score, we report the maximum Fb score
across all thresholds.

Since the MAE and F-measure neglect the structure information,
we also employ a structure measure Sa [52]. It provides an evalua-
tion method for continuous saliency prediction without binariza-
tion. The S-measure Sa combines the object-aware (Sobj) and
region-aware (Sreg) structural similarity and is computed as
follows:

Sa ¼ a � Sobj þ ð1� aÞ � Sreg ; ð22Þ
where a 2 ½0;1� is the balance parameter and we set a ¼ 0:5 as the
default [52].

The E-measure En [55] is a perceptual evaluation based on the
human cognitive system. It can assess the local pixel level and glo-
bal image level similarity between the predicted saliency map and
the ground truth. The specific definition is as follows:

En ¼ 1
K

XK
j¼1

nðM;GÞ; ð23Þ

where M is the binary mask converted from a saliency map and n is
the enhanced alignment matrix [55].

Implementation Details. We conduct our experiments using
the PyTorch toolbox on an NVIDIA 2080Ti GPU. The well-known
VGG-16 [64] pretrained on the ImageNet database [65] is utilized
as the backbone of both RGB and depth streams. The input depth
maps are repeated three times in the channel direction to obtain
the standard input format of VGG-16. All the input images are
resized to 256 � 256 pixels. To prevent overfitting, these input
images are augmented by random flipping, clipping, and rotation.

The whole proposed network is trained end-to-end by using the
stochastic gradient descent (SGD) optimizer [66] with the batch
size of 4 for 73 epochs. The model needs approximately 600,000
training iterations for convergence, which takes nearly 20 h. The
learning rate is fixed to 1e-10 in the entire training procedure.
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The momentum is set to 0.99, and the weight decay is assigned as
0.0005. During the whole detection framework, our method does
not adopt any preprocessing or postprocessing strategies to
Table 1
Quantitative results compared with seventeen RGB-D SOD methods. ‘‘-” means that the resu
are trained with the NJUD, NLPR, and DUT-RGBD training sets. " (#) indicates the larger (s
underline, respectively.

Model NLPR [26]

Sa" Fb" En" MAE# Sa"
FCMNet(ours) 0.916 0.908 0.949 0.024 0.905

ASIF(21TCYB)[56] 0.884 0.900 0.822 0.030 0.535

DQSF(21NC)[57] 0.900 0.884 0.938 0.034 0.879
MCMFNet(21SP)[11] 0.905 0.885 0.938 0.040 0.903
*A2dele(20CVPR)[38] 0.881 0.881 0.945 0.028 0.884
*SSF(20CVPR)[37] 0.914 0.896 0.935 0.026 0.904

D3Net(20TNNLS)[9] 0.905 0.885 0.945 0.033 0.904
*DMRA(19ICCV)[35] 0.899 0.879 0.947 0.031 0.900

CPFP(19CVPR)[34] 0.888 0.867 0.932 0.036 0.872
TANet(19TIP)[58] 0.886 0.863 0.941 0.041 0.858
MMCI(19PR)[33] 0.856 0.815 0.913 0.059 0.848
PCF(18CVPR)[59] 0.874 0.841 0.925 0.044 0.842
CTMF(17TCYB)[60] 0.860 0.825 0.929 0.056 0.863

DF(17TIP)[61] 0.802 0.782 0.782 0.080 0.744
MDSF(17TIP)[28] 0.805 0.793 0.885 0.095 0.741
CDCP(17ICCV)[62] 0.732 0.651 0.825 0.108 0.709
LBE(16CVPR)[27] 0.776 0.758 0.866 0.073 0.703
DCMC(16SPL)[63] 0.729 0.656 0.795 0.112 0.707

Model STERE [25]

Sa" Fb" En" MAE# Sa"
FCMNet(ours) 0.899 0.904 0.939 0.043 0.862

ASIF(21TCYB)[56] 0.869 0.894 0.926 0.050 0.814

DQSF(21NC)[57] 0.897 0.888 0.932 0.048 0.844

MCMFNet(21SP)[11] - - - - -
*A2dele(20CVPR)[38] 0.879 0.879 0.928 0.044 0.837

*SSF(20CVPR)[37] 0.893 0.889 0.936 0.044 0.859
D3Net(20TNNLS)[9] 0.886 0.886 0.938 0.047 0.826

*DMRA(19ICCV)[35] 0.889 0.878 0.929 0.054 0.823
CPFP(19CVPR)[34] 0.879 0.874 0.925 0.051 0.828
TANet(19TIP)[58] 0.871 0.861 0.923 0.060 0.801
MMCI(19PR)[33] 0.873 0.863 0.927 0.068 0.787
PCF(18CVPR)[59] 0.875 0.860 0.925 0.064 0.794
CTMF(17TCYB)[60] 0.848 0.831 0.912 0.086 0.795

DF(17TIP)[61] 0.751 0.757 0.847 0.142 0.784
MDSF(17TIP)[28] 0.728 0.719 0.846 0.176 0.694

CDCP(17ICCVW)[62] 0.713 0.664 0.786 0.149 0.717
LBE(16CVPR)[27] 0.660 0.633 0.787 0.250 0.736
DCMC(16SPL)[63] 0.731 0.740 0.819 0.148 0.753

Model SIP [9]

Sa" Fb" En" MAE# Sa"
FCMNet(ours) 0.858 0.881 0.912 0.062 0.679

ASIF(21TCYB)[56] 0.373 0.250 0.552 0.269 0.435
DQSF(21NC)[57] - - - - -

MCMFNet(21SP)[11] - - - - -
*A2dele(20CVPR)[38] 0.826 0.832 0.890 0.070 0.641
*SSF(20CVPR)[37] 0.874 0.880 0.921 0.053 0.595

D3Net(20TNNLS)[9] 0.806 0.821 0.875 0.085 0.689

*DMRA(19ICCV)[35] 0.864 0.861 0.910 0.063 0.592

CPFP(19CVPR)[34] 0.850 0.851 0.903 0.064 0.685
TANet(19TIP)[58] 0.835 0.830 0.870 0.075 0.656
MMCI(19PR)[33] 0.833 0.818 0.897 0.086 0.660
PCF(18CVPR)[59] 0.742 0.838 0.901 0.071 0.655
CTMF(17TCYB)[60] 0.716 0.694 0.829 0.139 0.641

DF(17TIP)[61] 0.653 0.657 0.565 0.185 0.595
MDSF(17TIP)[28] 0.717 0.698 0.645 0.167 -

CDCP(17ICCVW)[62] 0.595 0.505 0.683 0.224 -
LBE(16CVPR)[27] 0.727 0.751 0.651 0.200 0.637
DCMC(16SPL)[63] 0.683 0.618 0.598 0.186 0.427
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improve performance. When testing, the FPS of our method is
around 55.
lts are unavailable since the authors did not release them. ‘‘*” means that the methods
maller), the better. The best and the second best results are highlighted in bold and

RGBD135 [47] NJU2K [48]

Fb" En" MAE# Sa" Fb" En" MAE#
0.913 0.949 0.025 0.901 0.907 0.929 0.044
0.473 0.624 0.109 0.889 0.900 0.921 0.047

0.863 0.931 0.036 0.892 0.891 0.928 0.051
0.877 0.934 0.036 0.889 0.882 0.923 0.061
0.870 0.920 0.029 0.869 0.873 0.916 0.051
0.884 0.941 0.026 0.899 0.896 0.931 0.043

0.885 0.946 0.030 0.886 0.886 0.927 0.051

0.888 0.943 0.030 0.893 0.887 0.930 0.051

0.846 0.923 0.038 0.879 0.877 0.926 0.053
0.828 0.910 0.046 0.878 0.874 0.925 0.060
0.822 0.928 0.065 0.858 0.852 0.915 0.079
0.804 0.893 0.049 0.877 0.872 0.924 0.059
0.844 0.932 0.055 0.849 0.845 0.913 0.085
0.761 0.867 0.094 0.764 0.800 0.865 0.137
0.746 0.856 0.090 0.748 0.775 0.838 0.157
0.631 0.811 0.115 0.668 0.615 0.740 0.180
0.788 0.890 0.208 0.700 0.746 0.807 0.149
0.666 0.773 0.111 0.690 0.723 0.803 0.167

LFSD [50] SSD [49]

Fb" En" MAE# Sa" Fb" En" MAE#
0.883 0.903 0.068 0.855 0.860 0.903 0.055

0.858 0.861 0.090 0.849 0.846 0.888 0.059

0.839 0.884 0.086 - - - -

- - - 0.842 0.824 0.902 0.075
0.836 0.880 0.074 0.807 0.815 0.870 0.068

0.866 0.900 0.066 0.844 0.845 0.899 0.057
0.810 0.861 0.073 0.857 0.834 0.910 0.059

0.841 0.886 0.087 0.857 0.821 0.892 0.058
0.826 0.872 0.088 0.807 0.766 0.852 0.082
0.796 0.847 0.111 0.840 0.810 0.897 0.063
0.771 0.838 0.132 0.813 0.781 0.882 0.082
0.778 0.835 0.112 0.841 0.804 0.892 0.062
0.791 0.864 0.119 0.773 0.721 0.851 0.098
0.814 0.864 0.141 0.743 0.734 0.828 0.143
0.791 0.819 0.197 0.673 0.703 0.779 0.192
0.703 0.786 0.167 0.683 0.683 0.683 0.683
0.726 0.804 0.208 0.621 0.619 0.736 0.278
0.817 0.856 0.155 0.704 0.711 0.786 0.169

ReDWeb-S [51]

Fb" En" MAE#
0.675 0.756 0.157

0.392 0.567 0.291
- - -
- - -

0.603 0.670 0.160
0.558 0.710 0.189

0.673 0.768 0.149
0.579 0.721 0.188

0.645 0.744 0.142

0.623 0.741 0.165
0.641 0.754 0.176
0.627 0.743 0.166
0.607 0.739 0.204
0.579 0.683 0.233

- - -
- - -

0.629 0.730 0.253
0.348 0.549 0.313



Table 2
Speeds and sizes of the proposed method and some other typical methods.

Method Params (MB) # Speed (FPS) "
MMCI (19PR) [33] 930 19
CPFP (19CVPR) [34] 278 6
DMRA (19ICCV) [35] 147 22

FCMNet (Ours) 196.65 55
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4.2. Comparison with SOTAs

In this subsection, we compare the proposed method with sev-
enteen state-of-the-art RGB-D salient object detection methods,
including four traditional methods: MDSF [28], CDCP [62], LBE
[27], and DCMC [63], and thirteen DNN-based methods: MCMFNet
[11], ASIF [56], DQSF [57], A2dele [38], SSF [37], D3Net [9], DMRA
[35], CPFP [34], TANet [58], MMCI [33], PCF [59], CTMF [60], and DF
[61]. For fair comparison, we report the quantitative results and
saliency maps provided by the authors directly or generate these
results using the corresponding codes with default parameters.

(1) Quantitative analysis: The quantitative comparison results
under four different evaluation metrics on eight data sets are
reported in Table 1. The comparison methods are presented from
top to bottom according to the year of publication. For most eval-
Fig. 6. Qualitative comparison of the state-of-the
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uation metrics, e.g., Fb; Sa and En, a higher value indicates higher
model effectiveness. On the contrary, the opposite is true for the
MAE. Most comparison methods are trained with NJU2K and NLPR.
In contrast, A2dele [38], SSF [37] and DMRA [35] are trained with
the combination of NJU2K, NLPR and DUT. We mark these three
methods with asterisks (‘‘*”) to show the difference in their train-
ing datasets.

In this subsection, we analyze the quantitative results from two
aspects, evaluation metrics and datasets. As shown in Table 1, the
proposed framework leads to performance improvements accord-
ing to several criteria. More concretely, our method consistently
exceeds all the SOTAs in terms of Fb on all datasets. Compared with
that of the second best method under the max F-measure, the per-
formance gain of our method reaches 0.8% for NJU2K, 0.9% for
NLPR, 2.8% for RGBD135, 1.7% for SSD, 1.1% for STERE, and 2.0%
for LFSD. Based on this experimental observation, we can infer that
the proposed FCMNet dependably detects salient objects rather
than wrongly predicting background as salient regions. This find-
ing provides a convincing demonstration that our modal is reliable.
In addition, our method obtains the best Sa results on five datasets,
e.g., NJU2K, NLPR, RGBD135, STERE, and LFSD, and the third best Sa
results on one dataset, e.g., SSD. In terms of MAE, the proposed
FCMNet outperforms other SOTA methods on four datasets, e.g.,
NLPR, RGBD135, SSD, and LFSD, and performs almost similarly to
-art RGB-D SOD methods and our approach.
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the best method on two datasets, e.g., 0.044 (ours) v.s. 0.043 (SSF)
in NJU2K, 0.068 (ours) v.s. 0.066 (SSF) in LFSD.

From the perspective of datasets, the RGBD135 dataset contains
high-quality depth maps, while LFSD consists of some low-quality
depth information. Our framework suppresses most methods on
these two datasets, which indicates the generalization ability and
robustness of FCMNet on datasets with different qualities of depth
information. We note that the training set of A2dele [38], SSF [37]
and DMRA [35] includes images from the DUT dataset [35]. DUT
and LFSD are both collected with a Lytro Illum camera, which
makes the samples in these two datasets similar. However, our
results on LFSD still demonstrate competitive performance against
the methods trained on DUT. We also achieve comparable perfor-
mance in SIP dataset [9] and ReDWeb-S dataset [51]. The above
analysis of the quantitative results proves the effectiveness of this
method for improving performance in RGB-D SOD.

Besides the detection performance, we also compare the speed
and parameter size of our FCMNet with some other RGB-D SOD
methods. As listed in Table 2, our model contains relatively fewer
parameters, which means that it is less prone to cause overfitting
during training, and more convenient to run on portable devices.
Although the parameters of DMRA [35] are fewer than our model,
the test speed of the proposed FCMNet is faster than DMRA. As
shown in the third column of Table 2, the proposed method is fas-
ter than other typical methods with a speed of 55 FPS.

(2) Qualitative analysis: To analyze our results more intu-
itively, some visualization results are shown in Fig. 6. These exam-
ples cover several challenging circumstances, including large
objects, small objects, multi-objects, complex objects, and poor-
quality depth maps. For instance, the first two rows show the capa-
bility of our model to detect large and small objects. Among all of
the methods, only the proposed FCMNet can produce a complete
structure and sharp boundaries. The image in the third row is chal-
Fig. 7. The visual results
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lenging, because a stone is present in the background that has sim-
ilar appearance to the foreground stone. Some methods will be
disturbed by the stone in the background, e.g., CPFP [34], while
our method can successfully separate the salient objects in the
foreground. The last image is a typical case of low-quality depth
maps. Our method achieves superior visual results compared with
other approaches, e.g., D3Net [9]. Note that D3Net is designed for
the case of low-quality depth maps in RGB-D SOD. These examples
prove that our method is robust to noise in low-quality depth cues.

4.3. Ablation Study

In this subsection, we evaluate the effectiveness of the key com-
ponents in the proposed neural networks. In detail, we analyze 1)
the contribution of the FACMA, 2) the advantage of the SFCA, 3) the
significance of the WCMF, and 4) the usefulness of edge supervi-
sion. In each comparative experiment, only one component is
changed. Then, we retrain the neural networks with the same
training protocol as before, and record the test results. Both quali-
tative and quantitative comparisons are discussed in this subsec-
tion. The visual examples in Fig. 7 are taken from the same eight
datasets described in Section 4.1. Since the experimental phe-
nomenon and the quantitative trends found on these eight datasets
are similar, we only reported the results on NJU2K [48], NLPR [26]
and RGBD135 [47] in Table 3.

(1) The contribution of the FACMA module. In the proposed
FCMNet, the FACMAmodule plays a significant role in performance
enhancement. To evaluate the effectiveness of this module, we
omit it in the whole neural network. The output feature maps from
each stage in VGG-16 are directly connected to the WCMF module.
The quantitative consequence of this change, denoted as ‘‘w/o
FACMA”, is reported in Table 3. As shown in the table, different
evaluation indicators on these three datasets show evidently lower
of ablation analysis.



Table 3
Ablation analysis for the proposed FCMNet on the NLPR, NJU2K and RGBD135 datasets. " (#) indicates the larger (smaller), the better. The best and the second best results are
highlighted in bold and underline, respectively.

Models NLPR [26] NJU2K [48] RGBD135 [47]

Sa" Fb" En" MAE# Sa" Fb" En" MAE# Sa" Fb" En" MAE#
w/o FACMA 0.904 0.898 0.934 0.031 0.889 0.896 0.914 0.048 0.893 0.903 0.937 0.031
w/o FCA 0.908 0.902 0.936 0.031 0.894 0.901 0.923 0.049 0.899 0.904 0.938 0.030

w/o WCMF (add) 0.898 0.888 0.924 0.035 0.884 0.889 0.906 0.052 0.894 0.900 0.946 0.032
w/o WCMF (concat) 0.891 0.883 0.929 0.035 0.886 0.896 0.919 0.050 0.853 0.859 0.912 0.043

w/o Edge 0.908 0.901 0.936 0.030 0.897 0.906 0.924 0.047 0.897 0.898 0.944 0.031
FCMNet 0.916 0.908 0.947 0.026 0.899 0.907 0.927 0.044 0.905 0.909 0.949 0.026
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values. Some visual examples are presented in the fifth column of
Fig. 7. The network structure without the FACMA module is sus-
ceptible to the interferences caused by multiple objects, e.g., the
child in the second image. The above ablation analysis proves the
contribution of the FACMA module.

(2) The advantage of the SFCA module. In this subsection, we
conduct experiments to confirm the advantage of SFCA. By replac-
ing the FCA unit with the common channel attention module, the
proposed SFCA is converted to an scSE module [15]. In Table 3,
without a frequency-aware attention mechanism, the proposed
model cannot effectively preserve the complementary features
from different modalities. As shown in the sixth column of Fig. 7,
the results of ‘‘w/o FCA” bring some backgrounds into the final sali-
ent results, because the complementary information between the
two modalities is not used effectively.

(3) The significance of the WCMF module. The WCMF module
aims to enhance and fuse the features from different modalities. In
this subsection, we replace the WCMF with an elementwise addi-
tion operation or a concatenation operation to verify the effect of
this component. This attempt, denoted as ‘‘w/o WCMF (add)” and
‘‘w/o WCMF (concat)”, does not achieve better performance in
Table 3. Some examples are illustrated in the second last column
of Fig. 7. The neural networks without the WCMF module tend to
regard background areas as salient regions, increasing the number
of false positive samples, e.g., the first two images. Thus, we con-
firm that the WCMF module is essential.

(4) The usefulness of edge supervision. Although edge infor-
mation is effective for RGB saliency detection [42], its application
for RGB-D SOD has not been tested. As mentioned in Section 3.4,
we added edge supervision in the second stage of the decoder. In
this subsection, edge information is substituted by ground truth
masks, which is represented as ‘‘w/o edge” in the following. As
shown in Table 3, this replacement causes performance degrada-
tion. Visual examples are listed in the last column of Fig. 7. Com-
Fig. 8. Some failure cases of our FCMNet. The first row shows the salient objects
with complex outlines. The second row shows the scenes with multiple salient
objects. The third row shows the interference caused by depth information.
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pared with the proposed FCMNet, this approach blurs the
boundaries of the final outputs, e.g., the right side of the third
picture.

4.4. Failure Cases

In this subsection, we present some failure cases and analyze
the reasons. As shown in Fig. 8, the failure of our model is mainly
caused by three kinds of reasons. First, the performance may
decrease when the salient object has complex outlines, such as
the first example in Fig. 8. Since the complex outlines are easily
adjacent to the background, our networks can not obtain sharp
boundaries. Second, when multiple objects appear in a cluttered
scene, the proposed method can not obtain accurate results. For
instance, the second example in Fig. 8 illustrates this case. Differ-
ent objects contain various depth information, while these cues
are contradictory. The neural networks will be misguided by this
conflicting information. Finally, when the quality of the depth
map is unsatisfactory, the proposed FCMNet may not extract the
complete structure of the salient objects, as shown in the last
row in Fig. 8.
5. Conclusion

In this paper, we present a two-stream encoder-decoder neural
network to effectively extract and fuse the representative features
in RGB-D SOD. The FACMA module is designed to automatically
extract and select complementary features. In the FACMA module,
we also proposed an SFCA module to preserve rich features from
two modalities. The WCMF module is proposed for enhancing
and fusing heterogeneous features. Extensive experiments are con-
ducted on eight benchmark datasets. Compared with seventeen
state-of-the-art methods, our model obtains competitive results
on four evaluation metrics. In the future, we will focus on design-
ing a lightweight neural network to detect RGB-D salient objects.
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