
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Colab 1 due this Thursday
 Colab 2 out on Thursday (same day)
 Thank you for the suggestion for in-person &

group office hours!

▪ We will be hosting 1 group OH in person a week.
CA Zhuoyi Huang will lead these.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

…

Output: Node embeddings.
Also, we can embed subgraphs,
graphs

Idea: Node’s neighborhood defines a
computation graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

Determine node
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

 Intuition: Nodes aggregate information from
their neighbors using neural networks

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Neural networks

 Intuition: Network neighborhood defines a
computation graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Every node defines a computation
graph based on its neighborhood!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

!
"# $ % &

' (#
)

*
(+ ,#

)

-./ 0# &

1 0)
))

- #) - '
)

* ' '

% #2 #
"

)

3 ! % -
)
4*

) '0 ' #

56789!:6;7-<:8

"** ** -

*1$9 = 4> 7 2# "- ' 4 "? - "5

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

@ ! ' #2 #
"

) #A

3 ! ' # -)
4*

) ' * '*

5 6 7> 8 > 9 !:> 6 >;> 7 > - < > :8

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections

' *!> B - * C/9 >=/- '* *##<#

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

2# "- *- "5

D# $ " 7- "5 "-

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised

objectives
• Node/Edge/Graph level

objectives
(We will discuss all of
these later in class)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

 Idea of a GNN Layer:
▪ Compress a set of vectors into a single vector
▪ Two-step process:
▪ (1) Message
▪ (2) Aggregation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Input node embedding 𝐡𝑣
𝑙−1 , 𝐡𝑢∈𝑁(𝑣)

𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

(2) Aggregation

(1) Message

Node 𝒗

"***
)

EA?#)) = **

 (1) Message computation
▪ Message function:
▪ Intuition: Each node will create a message, which will be

sent to other nodes later

▪ Example: A Linear layer 𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1

▪ Multiply node features with weight matrix 𝐖 𝑙

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1

 (2) Aggregation
▪ Intuition: Each node will aggregate the messages from

node 𝑣’s neighbors

▪ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

▪𝐡𝑣
𝑙 = Sum({𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

(2) Aggregation

(1) Message

Node 𝒗

#)**

𝐡𝑣
𝑙 = CONCAT AGG 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙

 Issue: Information from node 𝑣 itself could get lost
▪ Computation of 𝐡𝑣

(𝑙) does not directly depend on 𝐡𝑣
(𝑙−1)

 Solution: Include 𝐡𝑣
(𝑙−1) when computing 𝐡𝑣

(𝑙)

▪ (1) Message: compute message from node 𝒗 itself
▪ Usually, a different message computation will be performed

▪ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself
▪ Via concatenation or summation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

𝐦𝑣
(𝑙) = 𝐁 𝑙 𝐡𝑣

𝑙−1𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1

First aggregate from neighbors

Then aggregate from node itself

% E 07 *-7 "- *;F/GG<8H "- 0*
) I'0* "C* <-9 J*'K3* "- '0 5J*

(2) Aggregation

(1) Message

 Putting things together:
▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness
▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
▪ Can be added to message or aggregation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙

-**#-##, *-

 (1) Graph Convolutional Networks (GCN)

 How to write this as Message + Aggregation?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

 (1) Graph Convolutional Networks (GCN)

 Message:

▪ Each Neighbor: 𝐦𝑢
(𝑙) = 1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

 Aggregation:
▪ Sum over messages from neighbors, then apply activation

▪ 𝐡𝑣
𝑙 = 𝜎 Sum 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

(2) Aggregation

(1) Message

In GCN graph is assumed to have
self-edges that are included in the
summation.

=:6;71<L/G 4GM7N/8NO P7-6<Q

K)
>%
4 K)

>'

 (2) GraphSAGE

 How to write this as Message + Aggregation?
▪ Message is computed within the AGG ⋅
▪ Two-stage aggregation
▪ Stage 1: Aggregate from node neighbors

▪ Stage 2: Further aggregate over the node itself

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

𝐡𝑁(𝑣)
(𝑙) ← AGG 𝐡𝑢

(𝑙−1),∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙) ← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣

𝑙−1 ,𝐡𝑁(𝑣)
(𝑙))

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

5)**$*!-*@.*!*)

 Mean: Take a weighted average of neighbors

 Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

 LSTM: Apply LSTM to reshuffled of neighbors

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

AGG = Mean({MLP(𝐡𝑢
(𝑙−1)), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1), ∀𝑢 ∈ 𝜋 𝑁 𝑣])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

3 # 7 5 ' * - R # ** 5J*07

' - - "- I 0)
)

('* '-# 8O

 ℓ2 Normalization:
▪ Optional: Apply ℓ2 normalization to 𝐡𝑣

(𝑙) at every layer

where (-norm)

▪ Without ℓ2 normalization, the embedding vectors have
different scales (ℓ2-norm) for vectors

▪ In some cases (not always), normalization of embedding
results in performance improvement

▪ After ℓ2 normalization, all vectors will have the same
ℓ2-norm

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

''' <@ 7 >! - - 04 4 ' N 4 "- @ ' "? 7 K S

 (3) Graph Attention Networks

 In GCN / GraphSAGE

▪ 𝛼𝑣𝑢 =
1

𝑁 𝑣
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
▪⟹ 𝛼𝑣𝑢 is defined explicitly based on the

structural properties of the graph (node degree)
▪⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important

to node 𝑣

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Attention weights

3*' *- 07 #A $ *? 5* '*) J/ "# J* *- ' *- - * "- >J** J4) *- '

 (3) Graph Attention Networks

Not all node’s neighbors are equally important
▪ Attention is inspired by cognitive attention.
▪ The attention 𝜶𝒗𝒖 focuses on the important parts of

the input data and fades out the rest.
▪ Idea: the NN should devote more computing power on that

small but important part of the data.
▪ Which part of the data is more important depends on the

context and is learned through training.

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

<@ $ 7 !<- > " - * "-
(> '8

(

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be
learned?

 Goal: Specify arbitrary importance to different
neighbors of each node in the graph

 Idea: Compute embedding 𝒉𝑣
(𝑙) of each node in the

graph following an attention strategy:
▪ Nodes attend over their neighborhoods’ message
▪ Implicitly specifying different weights to different nodes

in a neighborhood

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

J* ?2# *- -.Q "#

 Let 𝛼𝑣𝑢 be computed as a byproduct of an
attention mechanism 𝒂:
▪ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢

(𝑙−1),𝐖(𝑙)𝒉𝑣
(𝑙−1))

▪ 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬message to node 𝒗

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1))

*/ "- ' *7

7 B 49 -
"

#D

9-<-N.

▪ Normalize 𝑒𝑣𝑢 into the final attention weight 𝜶𝒗𝒖
▪ Use the softmax function, so that σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

▪ Weighted sum based on the final attention weight
𝜶𝒗𝒖

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

𝛼𝐴𝐵
Weighted sum using 𝛼𝐴𝐵 , 𝛼𝐴𝐶 , 𝛼𝐴𝐷:
𝐡𝐴
(𝑙) = 𝜎(𝛼𝐴𝐵𝐖(𝑙)𝐡𝐵

(𝑙−1)+𝛼𝐴𝐶𝐖(𝑙)𝐡𝐶
(𝑙−1)+

𝛼𝐴𝐷𝐖(𝑙)𝐡𝐷
(𝑙−1))

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷

-.Q "#

-7@/ J/

 What is the form of attention mechanism 𝒂?
▪ The approach is agnostic to the choice of 𝑎
▪ E.g., use a simple single-layer neural network
▪ 𝑎 have trainable parameters (weights in the Linear layer)

▪ Parameters of 𝑎 are trained jointly:
▪ Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(𝑙)) in an end-to-end
fashion

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1)
𝐡𝐴
(𝑙−1) 𝐡𝐵

(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵

'0* *1 " ''') ' "# 9<H;:<G

J-- "-

D@# 0* '

*-

 Multi-head attention: Stabilizes the learning
process of attention mechanism
▪ Create multiple attention scores (each replica

with a different set of parameters):

▪ Outputs are aggregated:
▪ By concatenation or summation

▪ 𝐡𝑣
(𝑙) = AGG(𝐡𝑣

(𝑙) 1 , 𝐡𝑣
(𝑙) 2 , 𝐡𝑣

(𝑙) 3)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

𝐡𝑣
(𝑙)[1] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢1 𝐖(𝑙)𝐡𝑢

(𝑙−1))

𝐡𝑣
(𝑙)[2] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢2 𝐖(𝑙)𝐡𝑢

(𝑙−1))

𝐡𝑣
(𝑙)[3] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢3 𝐖(𝑙)𝐡𝑢

(𝑙−1))

2H 5JC*T J*=='*)--U00!4)?7*<*-@-$57Q<*@Q!0E*.GJQ "#

" *-.8<N S*= !<!-.

(4 J'P & V

W---! 8

3 'S4 *!! ??

7 '- $ 9 V

 Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

 Computationally efficient:
▪ Computation of attentional coefficients can be parallelized

across all edges of the graph
▪ Aggregation may be parallelized across all nodes

 Storage efficient:
▪ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

▪ Fixed number of parameters, irrespective of graph size
 Localized:
▪ Only attends over local network neighborhoods

 Inductive capability:
▪ It is a shared edge-wise mechanism
▪ It does not depend on the global graph structure

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

S
"

) '

<- @

'- - <-. *L '3

7
"#@#-#@#% '

&
' 0)

#
)
X> 7 *- ! "

3*

Y , -

<- ' *'J < *-N

'Y > E 5 7 *< '!@

'- B 9./ # <- ! '

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 In practice, these classic GNN
layers are a great starting point
▪ We can often get better

performance by considering a
general GNN layer design

▪ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

' 4- 7 == 0/ #0*4C

J** $

 Many modern deep learning modules can be
incorporated into a GNN layer
▪ Batch Normalization:
▪ Stabilize neural network training

▪ Dropout:
▪ Prevent overfitting

▪ Attention/Gating:
▪ Control the importance of a message

▪ More:
▪ Any other useful deep learning modules

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

 Goal: Stabilize neural networks training
 Idea: Given a batch of inputs (node embeddings)
▪ Re-center the node embeddings into zero mean
▪ Re-scale the variance into unit variance

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

𝛍𝑗 =
1
𝑁෍

𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝐷

𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝐷

Normalized node embeddings

𝛔𝑗2 =
1
𝑁
෍
𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

෡𝐗𝑖,𝑗 =
𝐗𝑖,𝑗 − 𝛍𝑗

𝛔𝑗
2 + 𝜖

𝐘𝑖,𝑗 = 𝛄𝑗෡𝐗𝑖,𝑗 + 𝛃𝑗

Step 1:
Compute the
mean and variance
over 𝑵 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

J' *P 2#0*
4 0<- <- = 5 - # '- *5 '

"7-)
' 2#

"

#
= 4 4# #
'# <- # # K*0- 4 0*

"# 5J* 07 L 7 J
"

#&
"

'

 Goal: Regularize a neural net to prevent overfitting.
 Idea:
▪ During training: with some probability 𝑝, randomly set

neurons to zero (turn off)
▪ During testing: Use all the neurons for computation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

 In GNN, Dropout is applied to the
linear layer in the message function
▪ A simple message function with linear

layer: 𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Dropout
𝐡𝑢

𝑙−1 𝐦𝑢
(𝑙)

𝐖 𝑙

Visualization of a linear layer

(2) Aggregation

(1) Message

Apply activation to 𝒊-th dimension of
embedding 𝐱
 Rectified linear unit (ReLU)

ReLU 𝐱𝑖 = max(𝐱𝑖, 0)
▪ Most commonly used

 Sigmoid

▪ Used only when you want to restrict the
range of your embeddings

 Parametric ReLU
PReLU 𝐱𝑖 = max 𝐱𝑖, 0 + 𝑎𝑖min(𝐱𝑖, 0)

𝑎𝑖 is a trainable parameter
▪ Empirically performs better than ReLU

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒−𝑥

I/7@O C/ IZ

 Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

 Designing novel GNN layers is still
an active research frontier!

 Suggested resources: You can
explore diverse GNN designs or try
out your own ideas in GraphGym

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

A GNN Layer

"9
"#) -)--$ 0-

'' '0 5- *. "-
>

'0 #D $ *

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

 How to construct a Graph Neural Network?
▪ The standard way: Stack GNN layers sequentially
▪ Input: Initial raw node feature 𝐱𝑣
▪ Output: Node embeddings 𝐡𝑣

(𝐿) after 𝐿 GNN layers

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

𝐡𝑣
(0) = 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

0)#)
J* "- J*

 The Issue of stacking many GNN layers
▪ GNN suffers from the over-smoothing problem

 The over-smoothing problem: all the node
embeddings converge to the same value
▪ This is bad because we want to use node

embeddings to differentiate nodes
 Why does the over-smoothing problem

happen?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

4==* **3 5J** <

!EJ* 0)#)
*"5

*;F/GG<8H # *- *!

 Receptive field: the set of nodes that determine
the embedding of a node of interest
▪ In a 𝑲-layer GNN, each node has a receptive field of
𝑲-hop neighborhood

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

3* 4==* "5
"#A

 Receptive field overlap for two nodes
▪ The shared neighbors quickly grows when we

increase the number of hops (num of GNN layers)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

 We can explain over-smoothing via the notion
of receptive field
▪ We knew the embedding of a node is determined

by its receptive field
▪ If two nodes have highly-overlapped receptive fields, then

their embeddings are highly similar

▪ Stack many GNN layers → nodes will have highly-
overlapped receptive fields → node embeddings
will be highly similar → suffer from the over-
smoothing problem

 Next: how do we overcome over-smoothing problem?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

045 8#Y J* *W 45 0)#)
'* $ J*=3* "- <- P*

5J'=3 4 "- *;F/GG<8H

 What do we learn from the over-smoothing problem?
 Lesson 1: Be cautious when adding GNN layers
▪ Unlike neural networks in other domains (CNN for image

classification), adding more GNN layers do not always help
▪ Step 1: Analyze the necessary receptive field to solve your

problem. E.g., by computing the diameter of the graph
▪ Step 2: Set number of GNN layers 𝐿 to be a bit more than the

receptive field we like. Do not set 𝑳 to be unnecessarily
large!

 Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

' 0- * * 4 '! #2 * 7 = =

#D2 *

' K * 4 B 4- 4W-: ; I *-*[' ' * ' ''/ -. 4 "5 I

 How to make a shallow GNN more expressive?
 Solution 1: Increase the expressive power within

each GNN layer
▪ In our previous examples, each transformation or

aggregation function only include one linear layer
▪ We can make aggregation / transformation become a

deep neural network!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

4==* 4) "5 5J*\ Y <@ -./ < 0*' 7- ** ' J*

 How to make a shallow GNN more expressive?
 Solution 2: Add layers that do not pass messages
▪ A GNN does not necessarily only contain GNN layers
▪ E.g., we can add MLP layers (applied to each node) before and after

GNN layers, as pre-process layers and post-process layers

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

' J** U 07 "3**0*

=** J**
"

#@J#

7- 0*)) *;F/GG<8H ') '!J*

 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
▪ Observation from over-smoothing: Node embeddings in

earlier GNN layers can sometimes better differentiate nodes
▪ Solution: We can increase the impact of earlier layers on the

final node embeddings, by adding shortcuts in GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

*5 07- ** #] ' - " 4)
"

' 07

* J

2R 0! < - * C / 9 = / - < * ' # # '

 Why do skip connections work?
▪ Intuition: Skip connections create a mixture of models
▪ 𝑁 skip connections → 2𝑁 possible paths
▪ Each path could have up to 𝑁 modules

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

▪ We automatically get a mixture
of shallow GNNs and deep GNNs

' 4 B - * C / 9 = / - ' # # ' #

<!# 0- 4 "- 4 0* J* 0@

= B 0 '-
"

@#R J* 5
"

#R

 A standard GCN layer

 A GCN layer with skip connection

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱
0'^* -#-73#]

9@<_ N:88/N-<:8

 Other options: Directly
skip to the last layer
▪ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

<- ' -
"

#7 A#&

' &
) 0# J* 2# "- ' A#)

' D# J4 > ' '
"

#

Our assumption so far has been
 Raw input graph = computational graph
Reasons for breaking this assumption
▪ Feature level:
▪ The input graph lacks features → feature augmentation

▪ Structure level:
▪ The graph is too sparse → inefficient message passing
▪ The graph is too dense → message passing is too costly
▪ The graph is too large → cannot fit the computational

graph into a GPU
▪ It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

0)#)--$.'*<0-'

' * # J"7 *04

' > ''')

3 ^

079- -7 "- ' 4- Y ** J*J 5**5J 3* "5 <- '

 Graph Feature manipulation
▪ The input graph lacks features → feature

augmentation
 Graph Structure manipulation
▪ The graph is too sparse → Add virtual nodes / edges
▪ The graph is too dense → Sample neighbors when

doing message passing
▪ The graph is too large → Sample subgraphs to

compute embeddings
▪ Will cover later in lecture: Scaling up GNNs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

!<1/

Why do we need feature augmentation?
 (1) Input graph does not have node features
▪ This is common when we only have the adj. matrix

 Standard approaches:
 a) Assign constant values to nodes

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

1

1

1

1

1

1

*5J*I"- $ *S0

<##@ ' Y < 3*3* "- 0XX@4##
` ' ' ' ' ' a

Why do we need feature augmentation?
 (1) Input graph does not have node features
▪ This is common when we only have the adj. matrix

 Standard approaches:
 b) Assign unique IDs to nodes
▪ These IDs are converted into one-hot vectors

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

7!- E 'K *-7 '

 Feature augmentation: constant vs. one-hot

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

J*

'- <- B *3* "- "#!0#)

)

-)'*$*@-*'*E30I*"- !#-*+*# :8/ E .:-

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

(Jiaxuan 2023)
Finished here.
Good lecture overall. The slides for GAT is
slightly repetitive, we could shrink 1 slide on the
content there.

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Example: Cycle count feature
▪ Can GNN learn the length of a cycle that 𝑣1 resides in?
▪ Unfortunately, no

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

*- ' 0)
)
! '5 !- ' 3 4 "- 3 0@

' b - D# '
"

? J !- '

 𝒗𝟏 cannot differentiate which graph it resides in
▪ Because all the nodes in the graph have degree of 2
▪ The computational graphs will be the same binary tree

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

𝑣1 𝑣2

𝑣1 resides in a cycle
with length 3

𝑣1 resides in a cycle
with length 4

𝑣1

𝑣1 resides in a cycle with infinite length

… …

The computational
graphs for node 𝒗𝟏
are always the same

'0 $J!- "5 &#)
'5 "9

S*) - !E 4- 0#)
-)--$*J'*Q

<- *J

*J0)<-c<***-74*.

'5 "5 &#) *- 5- "9 4'5 "5 &#)0'$'

5)
E <! B 4==*55* I@ 0*K

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution:
▪ We can use cycle count as augmented node features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

@ <- @ - -)
) * 0)

#
)

J* 2# "9 '

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Other commonly used augmented features:
▪ Clustering coefficient
▪ PageRank
▪ Centrality
▪ …

 Any feature we have introduced in
Lecture 2 can be used!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

=:G/ K/H6//

 Motivation: Augment sparse graphs
 (1) Add virtual edges
▪ Common approach: Connect 2-hop neighbors via

virtual edges
▪ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴2

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

A

B

C

D

E

Authors Papers

▪ Use cases: Bipartite graphs
▪ Author-to-papers (they authored)
▪ 2-hop virtual edges make an author-author

collaboration graph

<) F/ -./ *--

3J* d 445 e
3=** "- *509

 Motivation: Augment sparse graphs
 (2) Add virtual nodes
▪ The virtual node will connect to all the

nodes in the graph
▪ Suppose in a sparse graph, two nodes have

shortest path distance of 10
▪ After adding the virtual node, all the nodes

will have a distance of 2
▪ Node A – Virtual node – Node B

▪ Benefits: Greatly improves message
passing in sparse graphs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

The virtual
node

!<- 0)#)

4) ? *;F/GG<8H 0<1/-
" 0'* *!-7 "9 *;F/GG<8H

 Previously:
▪ All the nodes are used for message passing

 New idea: (Randomly) sample a node’s
neighborhood for message passing

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017
' *! < - "* 7 67_ . f4 7 * '* ' #*0 '

 For example, we can randomly choose 2
neighbors to pass messages
▪ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

 Next time when we compute the embeddings,
we can sample different neighbors
▪ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

 In expectation, we can get embeddings similar
to the case where all the neighbors are used
▪ Benefits: Greatly reduce computational cost
▪ And in practice it works great!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

#)4-# 0-1 *_:N. @#ADD?D??2DgD

-5.##'@#CJ#4*J##*)** e

 Recap: A general perspective for GNNs
▪ GNN Layer:
▪ Transformation + Aggregation
▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity:
▪ Deciding number of layers
▪ Skip connections

▪ Graph Manipulation:
▪ Feature augmentation
▪ Structure manipulation

 Next: GNN objectives, GNN in practice
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

