
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Goal: create long-lasting resources for your
technical profiles + broader graph ML
community

 Three types of projects
▪ 1) Real-world applications of GNNs
▪ 2) Tutorial on PyG functionality
▪ 3) Implementation of cutting-edge research

 We will publish your blog posts on our
course’s Medium page!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

 Goal: identify a specific use case and
demonstrate how GNNs and PyG can be used
to solve this problem

 Output: blog post, Google colab
 Example use cases
▪ Fraud detection
▪ Predicting drug interactions
▪ Friend recommendation

 Check out the featured posts from our course
last year as examples of this type of project

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

 Goal: develop a tutorial that explains how to
use existing PyG functionality

 Output: blog post, Google colab
 Example topics for tutorials
▪ PyG’s explainability module
▪ Methods for graph sampling (e.g., negative

sampling, sampling on heterogeneous graphs)
▪ Tutorial on GraphGym, a platform for designing

and evaluating GNNs
 Check out example tutorials from PyG

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

 Goal: implement interesting methods from a
recent research paper in graph ML

 Output: PR to PyG contrib, short blog post
 Project details
▪ Implementation should include comprehensive

testing and documentation on new functionality
▪ Try to build on existing PyG and PyTorch code

wherever possible
▪ Note: this project is more manageable if you are

already comfortable with PyTorch and deep
learning. We also highly recommend group of 3.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

 Project is worth 20% of your course grade
▪ Project proposal (2 pages), due February 7
▪ Final reports, due March 21

 We recommend groups of 3, but groups of 2
are also allowed

 Full project description will be released
tonight! We will provide much more detail on
each project type, examples, pointers to
datasets, tips for writing blog posts and
Google Colabs, etc.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

(2) Aggregation

(1) Message

 Putting things together:
▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness
▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
▪ Can be added to message or aggregation

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙

 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
▪ Observation from over-smoothing: Node embeddings in

earlier GNN layers can sometimes better differentiate nodes
▪ Solution: We can increase the impact of earlier layers on the

final node embeddings, by adding shortcuts in GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

 Graph Feature manipulation
▪ The input graph lacks features → feature

augmentation
 Graph Structure manipulation
▪ The graph is too sparse → Add virtual nodes / edges
▪ The graph is too dense → Sample neighbors when

doing message passing
▪ The graph is too large → Sample subgraphs to

compute embeddings
▪ Will cover later in lecture: Scaling up GNNs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution:
▪ We can use cycle count as augmented node features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings
{𝐡𝑣

𝐿 ,∀𝑣 ∈ 𝐺}

! "# $$ %& $ ' !$% !()) *# + ,
- .
* ! $/0122(34

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

 Idea: Different task levels require different
prediction heads

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Node-level
prediction

Edge-level
prediction

Graph-level
prediction

 Node-level prediction: We can directly make
prediction using node embeddings!

 After GNN computation, we have 𝑑-dim node
embeddings: {𝐡𝑣

𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺}
 Suppose we want to make 𝑘-way prediction
▪ Classification: classify among 𝑘 categories
▪ Regression: regress on 𝑘 targets

▪ 𝐖(𝐻) ∈ ℝ𝑘∗𝑑 : We map node embeddings from
𝐡𝑣
(𝐿) ∈ ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘 so that we can compute the

loss
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

5*%!$ (# &$$ 6

7- 8! 9 5: ! %+;
21' 1/0122(34 <"--= .

! 0$--1 >1"2

&(# 6# +"
$-#-$

! 5(#" 3(? ,

 Edge-level prediction: Make prediction using
pairs of node embeddings

 Suppose we want to make 𝑘-way prediction

 What are the options for ?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

?
𝐡𝑢

𝐿

𝐡𝑣
𝐿

 Options for :
 (1) Concatenation + Linear
▪ We have seen this in graph attention

▪ ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿))
▪ Here Linear(⋅) will map 2𝑑-dimensional

embeddings (since we concatenated embeddings)
to 𝑘-dim embeddings (𝑘-way prediction)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝐡𝑢
(𝑙−1)𝐡𝑣

(𝑙−1)

Concatenate Linear ෞ𝒚𝑢𝑣 -1#(<"

.*%'$@"!&!<A2$+#$/0122(34<%##)$B!
,

$#> .--

! $(- 5(#" 3(? ,

*. * !

 Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿):
 (2) Dot product
▪ ෝ𝒚𝒖𝒗 = (𝐡𝑢

𝐿)𝑇𝐡𝑣
𝐿

▪ This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

▪ Applying to 𝒌-way prediction:
▪ Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏) = (𝐡𝑢

𝐿)𝑇𝐖(1)𝐡𝑣
𝐿

…
ෝ𝒚𝒖𝒗
(𝒌) = (𝐡𝑢

𝐿)𝑇𝐖(𝑘)𝐡𝑣
𝐿

ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏),… , ෝ𝒚𝒖𝒗

(𝒌)) ∈ ℝ𝑘

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

&!.-=

<0# ;(3< CD12(E#(F3

!!G5 H

7I7 '--- 7IAJK AJKIAJK AJKI7 $$L!$ 6M6 #1H# . ->&H$-
AJK@

&$C 6N--$)# 6# %$!$$$.$$'!<#+##O

 Graph-level prediction: Make prediction using
all the node embeddings in our graph

 Suppose we want to make 𝑘-way prediction

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Graph-level prediction

(2) Aggregation

(1) Message
 Headgraph(⋅) is similar to
AGG(⋅) in a GNN layer!

%.$$'#$B)$. ! ()).)#?.%.$.*.## $/0122(34

 Options for
 (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})

 (2) Global max pooling
ෝ𝒚𝐺 = Max({𝐡𝑣

𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})
 (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})

 These options work great for small graphs
 Can we do better for large graphs?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

- - !! NN 9
6

-N $/0122(34 +(# P %&$. $$

 Issue: Global pooling over a (large) graph will lose
information

 Toy example: we use 1-dim node embeddings
▪ Node embeddings for 𝐺1: {−1,−2, 0, 1, 2}
▪ Node embeddings for 𝐺2: {−10,−20, 0, 10, 20}
▪ Clearly 𝐺1 and 𝐺2 have very different node embeddings
→ Their structures should be different

 If we do global sum pooling:
▪ Prediction for 𝐺1: ො𝑦𝐺 = Sum −1,−2, 0, 1, 2 = 0
▪ Prediction for 𝐺2: ො𝑦𝐺 = Sum −10,−20, 0, 10, 20 = 0
▪ We cannot differentiate 𝐺1 and 𝐺2!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

!< 6# " 9 $ $"# 6# %$ 5+! 6% 6-

 A solution: Let’s aggregate all the node
embeddings hierarchically
▪ Toy example: We will aggregate via ReLU Sum ⋅
▪ We first separately aggregate the first 2 nodes and last 3 nodes
▪ Then we aggregate again to make the final prediction

▪ 𝐺1 node embeddings: {−1,−2,0, 1, 2}
▪ Round 1: ො𝑦𝑎 = ReLU Sum −1,−2 = 0, ො𝑦𝑏 =
ReLU Sum 0,1, 2 = 3

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎, 𝑦𝑏 = 𝟑
▪ 𝐺2 node embeddings: {−10,−20, 0, 10, 20}
▪ Round 1: ො𝑦𝑎 = ReLU Sum −10, −20 = 0, ො𝑦𝑏 =
ReLU Sum 0,10, 20 = 30

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎, 𝑦𝑏 = 𝟑𝟎
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Now we can
differentiate
𝑮𝟏 and 𝑮𝟐 !

Q$

 DiffPool idea:
▪ Hierarchically pool node embeddings

▪ Leverage 2 independent GNNs at each level
▪ GNN A: Compute node embeddings
▪ GNN B: Compute the cluster that a node belongs to

▪ GNNs A and B at each level can be executed in parallel
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling , NeurIPS 2018

&$ ' - Q$ (# NN

%G* $ (< * 6

-A '

R ! S- * (3 T T 6&! - @ !

 DiffPool idea:

▪ For each Pooling layer
▪ Use clustering assignments from GNN B to aggregate node

embeddings generated by GNN A
▪ Create a single new node for each cluster, maintaining

edges between clusters to generated a new pooled network
▪ Jointly train GNN A and GNN B

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

 Supervised learning on graphs
▪ Labels come from external sources
▪ E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs
▪ Signals come from graphs themselves
▪ E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry
▪ We still have “supervision” in unsupervised learning
▪ E.g., train a GNN to predict node clustering coefficient

▪ An alternative name for “unsupervised” is “self-
supervised”

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

*B
6&!

 Supervised labels come from the specific use
cases. For example:
▪ Node labels 𝒚𝒗: in a citation network, which subject

area does a node belong to
▪ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an

edge is fraudulent
▪ Graph labels 𝒚𝐺: among molecular graphs, the drug

likeness of graphs
 Advice: Reduce your task to node / edge / graph

labels, since they are easy to work with
▪ E.g., we knew some nodes form a cluster. We can treat

the cluster that a node belongs to as a node label
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

- +(#B !

UFD" !!$ &$&$

' <(#

V()) CFFT

 The problem: sometimes we only have a graph,
without any external labels

 The solution: “self-supervised learning”, we can
find supervision signals within the graph.
▪ For example, we can let GNN predict the following:
▪ Node-level 𝒚𝑣. Node statistics: such as clustering

coefficient, PageRank, …
▪ Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge

between two nodes, predict if there should be a link
▪ Graph-level 𝒚𝐺 . Graph statistics: for example, predict

if two graphs are isomorphic
▪ These tasks do not require any external labels!

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

!+ ' 6B

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

 The setting: We have 𝑁 data points
▪ Each data point can be a node/edge/graph

▪ Node-level: prediction ෝ𝒚𝑣
(𝑖), label 𝒚𝑣

(𝑖)

▪ Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖) , label 𝒚𝑢𝑣

(𝑖)

▪ Graph-level: prediction ෝ𝒚𝐺
(𝑖), label 𝒚𝐺

(𝑖)

▪ We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖 to refer
predictions at all levels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

 Classification: labels 𝒚 𝑖 with discrete value
▪ E.g., Node classification: which category does a

node belong to
 Regression: labels 𝒚 𝑖 with continuous value
▪ E.g., predict the drug likeness of a molecular graph

 GNNs can be applied to both settings
 Differences: loss function & evaluation

metrics

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

 As discussed in lecture 6, cross entropy (CE) is
a very common loss function in classification

 𝐾-way prediction for 𝑖-th data point:

where:
𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

"

>(.
,W- (# &$*

P TF4 X.N

 For regression tasks we often use Mean Squared
Error (MSE) a.k.a. L2 loss

 𝐾-way regression for data point (i):

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

! 6# !% (

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC 7A7A- 5!%%!$ $"# 5! 6Y

$! +$ 9 6 !$% ' $C!

 We use standard evaluation metrics for GNN
▪ (Content below can be found in any ML course)
▪ In practice we will use sklearn for implementation
▪ Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:
▪ Root mean square error (RMSE)

▪ Mean absolute error (MAE)

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

! 6# !% &$

! !+ 6&

S #"(3# *
6

#(##Z 6# - &! . L$! $ #.$$'B#)$#<#+"!$
&! $ '

6

-N

 Evaluate classification tasks on graphs:
 (1) Multi-class classification
▪ We simply report the accuracy

 (2) Binary classification
▪ Metrics sensitive to classification threshold
▪ Accuracy
▪ Precision / Recall
▪ If the range of prediction is [0,1], we will use 0.5 as threshold

▪ Metric Agnostic to classification threshold
▪ ROC AUC

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

$B 5!%%!$ $2# 5! 6Y

$! +$ 9 6 !$% ' $C!

 Accuracy:

 Precision (P):

 Recall (R):

 F1-Score:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Sklearn Classification Report

Confusion matrix

7A7A- 5!%%!$ $"# 5! 6Y

$! +$ 9 6 !$% ' $C!

 ROC Curve: Captures the tradeoff in TPR and
FPR as the classification threshold is varied
for a binary classifier.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

Note: the dashed line
represents performance of
a random classifierImage Credit: Wikipedia FPR

TPR

7A7A- 5!%%!$ $"# 5! 6Y

$! +$ 9 6 !$% ' $C!

 ROC AUC: Area under the ROC Curve.
 Intuition: The probability that a classifier will rank a

randomly chosen positive instance higher than a
randomly chosen negative one

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Content Credit: Wikipedia

7A7A- 5!%%!$ $"# 5! 6Y

$! +$ 9 6 !$% ' $C!

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

 Fixed split: We will split our dataset once
▪ Training set: used for optimizing GNN parameters
▪ Validation set: develop model/hyperparameters
▪ Test set: held out until we report final performance

 A concern: sometimes we cannot guarantee
that the test set will really be held out

 Random split: we will randomly split our
dataset into training / validation / test
▪ We report average performance over different

random seeds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

V "# " ;1"<"41
6 R

- !# 9[---

!!G5 " "# (\

 Suppose we want to split an image dataset
▪ Image classification: Each data point is an image
▪ Here data points are independent
▪ Image 5 will not affect our prediction on image 1

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Training

Validation

Test

3
2

45

1

6

#-- 6 !! ' $!]&% ((. 2. %$$ (<

(. $)# V"#" ;1"<"41

 Splitting a graph dataset is different!
▪ Node classification: Each data point is a node
▪ Here data points are NOT independent
▪ Node 5 will affect our prediction on node 1, because it will

participate in message passing → affect node 1’s embedding

 What are our options?

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Training

Validation

Test

3
2

45

1

6

!+ ! -N (
.
(. 2

.

+$ (!

! T ! ! $ - J- + .
-

.

$! (# ! -

S $$ NN $ 6 ! (# (!$ + ,
-

.

 Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).

 We will only split the (node) labels
▪ At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels
▪ At validation time, we compute embeddings using

the entire graph, and evaluate on node 3&4’s labels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Training

Validation

Test

3
2

45

1

6

+;!%$ @

 Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs
▪ Now we have 3 graphs that are independent. Node 5 will

not affect our prediction on node 1 any more
▪ At training time, we compute embeddings using the

graph over node 1&2, and train using node 1&2’s labels
▪ At validation time, we compute embeddings using the

graph over node 3&4, and evaluate on node 3&4’s labels

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Training

Validation

Test

3
2

45

1

6

(# S $& "

[- $

(# Z ' - $ 6# # ! #-<&-!-

$. +$$% .
$.

 Transductive setting: training / validation / test
sets are on the same graph
▪ The dataset consists of one graph
▪ The entire graph can be observed in all dataset splits,

we only split the labels
▪ Only applicable to node / edge prediction tasks

 Inductive setting: training / validation / test sets
are on different graphs
▪ The dataset consists of multiple graphs
▪ Each split can only observe the graph(s) within the split.

A successful model should generalize to unseen graphs
▪ Applicable to node / edge / graph tasks

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

(5 6#)#

 Transductive node classification
▪ All the splits can observe the entire graph structure, but

can only observe the labels of their respective nodes

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Training

Validation

Test

Training

Validation

Test

 Inductive node classification
▪ Suppose we have a dataset of 3 graphs
▪ Each split contains an independent graph

 Only the inductive setting is well defined for
graph classification
▪ Because we have to test on unseen graphs
▪ Suppose we have a dataset of 5 graphs. Each split

will contain independent graph(s).

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Training Validation Test

$T !#

 Goal of link prediction: predict missing edges
 Setting up link prediction is tricky:
▪ Link prediction is an unsupervised / self-supervised

task. We need to create the labels and dataset
splits on our own

▪ Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

6 [=--

 For link prediction, we will split edges twice
 Step 1: Assign 2 types of edges in the original graph
▪ Message edges: Used for GNN message passing
▪ Supervision edges: Use for computing objectives
▪ After step 1:
▪ Only message edges will remain in the graph
▪ Supervision edges are used as supervision for edge

predictions made by the model, will not be fed into GNN!
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

3
2

45

1

Original graph

Message edges Supervision edges

 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
▪ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺1 𝐺2 𝐺3

 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
▪ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph
▪ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
▪ Supervision edges are not the input to GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

Training set Validation set

Message
edge

Supervision
edge

Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11

*0# Q!% E"B#

 Option 2: Transductive link prediction split:
▪ This is the default setting when people talk about

link prediction
▪ Suppose we have a dataset of 1 graph

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

3
2

45

1

[!# $&;$ 6# () !

 Option 2: Transductive link prediction split:
▪ By definition of “transductive”, the entire graph can

be observed in all dataset splits
▪ But since edges are both part of graph structure and the

supervision, we need to hold out validation / test edges
▪ To train the training set, we further need to hold out

supervision edges for the training set

▪ Next: we will show the exact settings
2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

3
2

45

1

 Option 2: Transductive link prediction split:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

3
2

45

1

The original graph

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

3
2

45

1 3
2

45

1

7- P ? !)) $ -) *)# +#
6

- $# - (#

 Summary: Transductive link prediction split:

▪ Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently.

▪ Luckily, we have full support in PyG and GraphGym

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

3
2

45

1

The original graph

3
2

45

1

Split Graph with
4 types of edges

Split
Training message edges
Training supervision edges
Validation edges
Test edges

B#(TT *# $241

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
DeepSNAP provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

 We introduce a general GNN framework:
▪ GNN Layer:
▪ Transformation + Aggregation
▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity:
▪ The over-smoothing problem
▪ Solution: skip connections

▪ Graph Augmentation:
▪ Feature augmentation
▪ Structure augmentation

▪ Learning Objectives
▪ The full training pipeline of a GNN

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

