
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Today (10/07): Colab 1 due, Colab 2 out
• Next Thursday (10/14): HW 1 due, HW 2 out
• Project proposals due on Tuesday 10/19

o If you are looking for project partners, check out / add
yourself to our pinned Ed post ("Project Partner Thread")
-- reach out to each other!

o We strongly encourage groups of 3, but groups of 1 or 2
are allowed

¡ Intuition: Map nodes to !-dimensional
embeddings such that similar nodes in the
graph are embedded close together

3

f ()=
Input graph 2D node embeddings

How to learn mapping function "?
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! ""#!" $

4

Goal:

Need to define!

Input network d-dimensional
embedding space

similarity +, - ≈ /!"/#

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Encoder: Maps each node to a low-dimensional
vector

¡ Similarity function: Specifies how the
relationships in vector space map to the
relationships in the original network

5

Similarity of ! and " in
the original network

dot product between node
embeddings

Decoder

ENC $ = &!

similarity +, - ≈ /!"/#

node in the input graph

d-dimensional
embedding

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Simplest encoding approach: Encoder is just an
embedding-lookup

6

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

! =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Limitations of shallow embedding methods:
§ !(|$|) parameters are needed:

§ No sharing of parameters between nodes
§ Every node has its own unique embedding

§ Inherently “transductive”:
§ Cannot generate embeddings for nodes that are not seen

during training
§ Do not incorporate node features:

§ Nodes in many graphs have features that we can and
should leverage

710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

%&&' ()*+ ,

-./& 0 1&2
,

3!-"

4 "56 7
8

7

9 $ 8): 9;48<8=
4

8 > 8 ?;@ "6 7

4 8+88

!@ AB8 !@ C?@)? C" 4@ =@ ?@ 678 7

"@@)
?7"">9@"@67"*")@"D!D"

!6

!@E 4 ! >

¡ Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

¡ Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

8

multiple layers of
non-linear transformations
based on graph structure

ENC $ =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

F" 5" $ "@ 4@ > "" G8

9

…

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs and
Transformers

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Supervised learning: we are given input !,
and the goal is to predict label ".

¡ Input ! can be:
§ Vectors of real numbers
§ Sequences (natural language)
§ Matrices (images)
§ Graphs (potentially with node and edge features)

¡ We formulate the task as an optimization
problem.

1510/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

B"B" $ B"B"

H

9 !8

"B I7 ?@

H 9@ +8G !@

!

¡ Formulate the task as an optimization problem:
min! ℒ(&, ())

¡ Θ: a set of parameters we optimize
§ Could contain one or more scalars, vectors, matrices …
§ E.g. Θ = {%} in the shallow encoder (the embedding lookup)

¡ ℒ: loss function. Example: L2 loss
ℒ &, () = - − (/ '

§ Other common loss functions:
§ L1 loss, huber loss, max margin (hinge loss), cross entropy …
§ See https://pytorch.org/docs/stable/nn.html#loss-functions

16

Objective function

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ One common loss for classification: cross entropy (CE)
¡ Label ! is a categorical vector (one-hot encoding)

§ e.g. ! =
¡ " # = Softmax , #

§ Recall from lecture 3: # $! = "!(#)%
∑&'() "!(#)&

where % is the number of classes.
§ e.g. # $ =

¡ CE !, " # = −∑!"#$ (3! log "(6)!)
§ &! and #(()! are the actual and predicted values of the *-th class.
§ Intuition: the lower the loss, the closer the prediction is to one-hot

¡ Total loss over all training examples:
§ ℒ = ∑ !,# ∈% CE ,, . /

§ !: training set containing all pairs of data and labels ", $
17

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

! is of class “3”

* + ! denotes ,-th
coordinate of the vector
output of func. * +

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

!@ 6"" B@@ !

J

A *.K. 7 D
A *.K L

H H 8 M N H < 7 ! 4 ! 4

=@ 7

H M
!@ G8 > A

A A

: B 7

8 H O ?; O

P
H) H H H QM H 8G 9 D8 7 D8 7 D8!** !

A 7

7 7

H H H
A

@ 7

> 8R H > > H 7

4

) H !@

8 8
S 7

> > > !

M 8 ! 8G7
T ; A 6U 4U

) 7
7 %*@

: 9@ H ,
>

8 H H @. H VU7 H H
8 8 H "*? H ?@ 4

N H

H B)@ 8 4
4

4

@. D8 H H A

V D W
A X X !

M 8 > A

W
;

W ?U@ D8
H . . !

,
W U. A

H H
Y > Z

)

" 8, ! X W [A

U. \)
]

N 8
A T A

U,
@. ! ^

H _ W [W X W 68 8

5. M H !@ 7 ! A
A

A !U D

T
` :

] B"4
S 7

a P

@. H !@ .;

A @ !67 ?= . U

7

b = c d

? @)U 84/! !
! 5.

8 !@U @. @. A

H H @. V L :

H ! AG8 7

A _
K H

H L
A T

) @ 7 L
) 4U

M
L !

8G, 9)@ GG
! 8G

7

H N !
. e RH 7

P 8) 7

D8 B@ : > 7 ! !
H

. L M

A
!

7
) 7

? , ! (!@
4 _ : 68

7

J

27 F A

c ? [c
A

! ! A

N c
8

¡ How to optimize the objective function?
¡ Gradient vector: Direction and rate of fastest

increase

∇!ℒ = (%ℒ%Θ0
, %ℒ%Θ'

, …)

§ Θ#, Θ%… : components of Θ
¡ Recall directional derivative

of a multi-variable function (e.g. ℒ) along a given
vector represents the instantaneous rate of
change of the function along the vector.

¡ Gradient is the directional derivative in the
direction of largest increase.

18

https://en.wikipedia.org/wiki/Gradient

Partial derivative

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

"B "? 48"

B888"

CK ?@ "@f

! !

6?@ ""C 95

¡ Iterative algorithm: repeatedly update weights in
the (opposite) direction of gradients until
convergence

¡ Training: Optimize Θ iteratively
§ Iteration: 1 step of gradient descent

¡ Learning rate (LR) *:
§ Hyperparameter that controls the size of gradient step
§ Can vary over the course of training (LR scheduling)

¡ Ideal termination condition: gradient = 0
§ In practice, we stop training if it no longer improves

performance on validation set (part of dataset we hold
out from training).

19

Θ ← Θ − &∇+ℒ

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! 5B"

8$

! """ !

¡ Problem with gradient descent:
§ Exact gradient requires computing ∇+ℒ(%, ' (),

where (is the entire dataset!
§ This means summing gradient contributions over all the

points in the dataset
§ Modern datasets often contain billions of data points
§ Extremely expensive for every gradient descent step

¡ Solution: Stochastic gradient descent (SGD)
§ At every step, pick a different minibatch * containing

a subset of the dataset, use it as input (

2010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

48 f@ A ?+
7
88, : =@ 6@ ! 8 8 ?@ ! C"! 48+

G8 f@ A ?+
,
?_ ! 48, : g)@2f U?h& 9@ 8 ?@ 6""3 !@ 48+

¡ Concepts:
§ Batch size: the number of data points in a minibatch

§ E.g. number of nodes for node classification task
§ Iteration: 1 step of SGD on a minibatch
§ Epoch: one full pass over the dataset (# iterations is

equal to ratio of dataset size and batch size)

¡ SGD is unbiased estimator of full gradient:
§ But there is no guarantee on the rate of convergence
§ In practice often requires tuning of learning rate

¡ Common optimizer that improves over SGD:
§ Adam, Adagrad, Adadelta, RMSprop …

2110/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

A E ? + @ 4@
E

@f)@) 97 $+8 8 8!@

5: ?; ! " 8 6"" = @ 8 8

!@ @f)@ 8 ?=

¡ Objective: min! ℒ(., / 0)
¡ In deep learning, function / can be very complex
¡ Example:

§ To start simple, consider linear function
' (= * ⋅ (, Θ = {W}

§ Then, if ' returns a scalar, then * is a learnable vector
∇&' = (1'12#

, 1'12%
, 1'12'

…)
§ But, if ' returns a vector, then * is the weight matrix

∇1/ =
%/0
%100

%/'
%10'

%/0
%1'0

%/'
%1''

22

Jacobian

matrix of !
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

L 7

L h

i : ! iJ0 0: !

B888" ""

!= "" @ @ > " !6

¡ Goal: min
$
ℒ(&, ())

§ To minimize ℒ, we need to evaluate the gradient:
∇,ℒ = -.

-/%
, -.-/&

, -.-/'
…

which means we need to derive derivative of ℒ.
¡ Overview of Back-propagation:
§ ℒ is composed from some set of predefined building

block functions -(⋅)
§ For each such - we also have its derivative -′
§ Then we can automatically compute∇+ℒ by evaluating

appropriate funcs. -′ on the minibatch *.
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

3 3 3

4 88"?8+ @f 8

¡ How about a more complex function:
() = ," ,&) , Θ = {W&,W'}

¡ Recall chain rule:

¡ Example: ∇%(=)*
)(,(%)

3)(,(%))%

¡ Back-propagation: Use of chain rule to
propagate gradients of intermediate steps, and
finally obtain gradient of ℒ w.r.t. Θ.

24

.*

./ =
.0
.1 3

.1

./ or (’ 4 = 52 ℎ 4 ℎ′(4)

In other words:
! " = $! $."
ℎ(') = $."
g * = $/*

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

=A K7 f

0JG 0Ji iJ0 0JG

L 7

L ,

8 9 4@

/h7/h7 /j
/: /j

A

/:

¡ Example: Simple 2-layer linear network
¡ () = 5 ℎ 4 = ," ,&)

¡ ℒ = ∑ %,1 ∈3 &,−()
"

§ The loss ℒ sums the L2 loss in a minibatch *.
¡ Hidden layer:
§ Intermediate representation of input (
§ Here we use ℎ(1) = 20(to denote the hidden layer
§ ' (= 21ℎ(1)

25

!!
!"

"#"$

#(%)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

L ,

H6"" @:@ GJ0 0J0 0JG
: 7

f?//&; *)j&k
l48 7""

¡ Forward propagation:
Compute loss starting from input
§ (ℎ - ℒ

¡ Back-propagation to compute gradient of
Θ = {,&,,'}

Start from loss, compute the gradient
:ℒ
:,'

= :ℒ
:(3

:(
:,'

, :ℒ
:,&

= :ℒ
:(3

:(
:,'

3 :,'
:,&

26

Multiply "! Multiply "" Loss

Compute backwards Compute backwards

Remember:
! " = $! $."
ℎ(') = $."
g * = $/*

!!
!"

"#"$

#(%)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

8, Z" !)g 62@ 4"""?8+

C95" 4@ 62+

¡ Note that in () = ," ,&) , ,",& is
another matrix (vector, if we do binary classification)

§ Hence ' (is still linear w.r.t. (no matter how
many weight matrices we compose

¡ We introduce non-linearity:
§ Rectified linear unit (ReLU)
3456 1 = max(1, 0)

§ Sigmoid

27

!

'

0

!

'

0

1; 1 = 1
1 + 423

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

8 " l 8 f@
E

8 "" B" @

@= "@ @ 4@ ? 8 + ! > !@8 !

¡ Each layer of MLP combines linear transformation and
non-linearity:

§ where *$ is weight matrix that transforms hidden representation at
layer + to layer + + 1

§ .$ is bias at layer +, and is added to the linear transformation of /
§ 0 is non-linearity function (e.g., sigmod)

¡ Suppose (is 2-dimensional, with entries 4# and 4%

28

((:;0) = ;(2:(: + >:)

!!
!"

1-dimensional
output

Every layer:
Linear transformation +
non-linearity

3-dimensional hidden
representation

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

B?>
4 E

> =A "@ @ 4@ ?8+ R>
4

8G

R

¡ Objective function:
min
$
ℒ(&, ())

¡ (can be a simple linear layer, an MLP, or
other neural networks (e.g., a GNN later)

¡ Sample a minibatch of input)
¡ Forward propagation: Compute ℒ given)
¡ Back-propagation: Obtain gradient ∇7ℒ using

a chain rule.
¡ Use stochastic gradient descent (SGD) to

optimize for Θ over many iterations.
2910/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs and
Transformers

3010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and

supervised training

3210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Assume we have a graph ;:
§ ? is the vertex set
§ @ is the adjacency matrix (assume binary)
§ A ∈ ℝ<×|?| is a matrix of node features
§ D: a node in ?; E D : the set of neighbors of D.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

6 87 7 88 B" D8 B"

5U 87 7
m @) 4@ " = < ! B9U "@ !U 7

8
7
!

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ F(|?|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

34
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

8 G8
7
! 7 8 R !@ @ 8 >U : "= @ > " l!" 9

3@ @ ?@ >

! ?@ B" ?@ = 678 7

!6 8 6"
a E

5"9 @E 8
a

CNN on an image:

35

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

AB > @?:

But our graphs look like this:

36

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding
window on the graph

§ Graph is permutation invariant
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! 95

G8 > 9@
a

@ > 9 B"
4 4

¡ Graph does not have a canonical order of the nodes!
¡ We can have many different order plans.

3710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

@?: "/?@) 4@

¡ Graph does not have a canonical order of the nodes!

38

A
C

B

E
F

D

A

B

C

D

E

F

Node features ($ Adjacency matrix)$

A
B
C
D
E
F

A B C D E FOrder plan 1

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features ($ Adjacency matrix)$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features (# Adjacency matrix)#

A
B
C
D
E
F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature ($ Adjacency matrix)$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature (# Adjacency matrix)#

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

What does it mean by “graph representation is
same for two order plans”?
¡ Consider we learn a function (that maps a

graph < = (=, >) to a vector ℝ8 then
(=&, >& = (=', >'

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: 2%, 3% Order plan 2: 2&, 3&

is the adjacency matrix
$ is the node feature matrix

For two order plans,
output of ! should

be the same!
AI 6 7

8
7 D8 F" "

AI ! 9
4

@ 4 !? ! !5 "

What does it mean by “graph representation is
same for two order plans”?
¡ Consider we learn a function (that maps a

graph < = (=, >) to a vector ℝ8.
¡ Then, if (=9 , >9 = (=: , >: for any order

plan @ and A, we formally say (is a
permutation invariant function.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

For a graph with 9 nodes, there
are 9! different order plans.

is the adjacency matrix
$ is the node feature matrix

5" F"

Similarly for node representation: We learn a
function (that maps nodes of < to a matrix ℝ;×8.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: 2%, 3% Order plan 2: 2&, 3&

' (/, */ = ' (0, *0 =

Similarly for node representation: We learn a
function (that maps nodes of < to a matrix ℝ;×8.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

For two order plans, the vector of node
at the same position is the same!

Order plan 1: 2%, 3% Order plan 2: 2&, 3&

' (/, */ = ' (0, *0 =

Representation vector
of the brown node A

Representation vector
of the brown node E

Similarly for node representation: We learn a
function (that maps nodes of < to a matrix ℝ;×8.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

A
C

B

E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

For two order plans, the vector of node
at the same position is the same!

Order plan 1: 2%, 3% Order plan 2: 2&, 3&

' (/, */ = ' (0, *0 =
Representation vector
of the brown node C

Representation vector
of the brown node D

For node representation
¡ Consider we learn a function (that maps a graph
< = (=, >) to a matrix ℝ;×8
§ graph has H nodes, each row is the embedding of a

node.
¡ Similarly, if this property holds for any pair of

order plan @ and A, we say (is a permutation
equivariant function.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

¡ Graph neural networks consist of multiple
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

[Bronstein, ICLR 2021 keynote]

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Switching the order of the
input leads to different

outputs!

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

¡ Are any neural network architecture, e.g.,
MLPs, permutation invariant / equivariant?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

Next: Design graph neural
networks that are permutation

invariant / equivariant by
passing and aggregating

information from neighbors!
!

4E 4=@
7
B" B" >) !"""

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs and
Transformers

5210/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! 9@_ 8 "" 5B""

Idea: Node’s neighborhood defines a
computation graph

53

Determine node
computation graph

-

Propagate and
transform information

-

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

?@ !

¡ Key idea: Generate node embeddings based
on local network neighborhoods

54

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

55

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Network neighborhood defines a
computation graph

56

Every node defines a computation
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4 8D 4@8 7

4 !@ B" "" 4@ ?@ B"

A

?@ ! G8D$!@ 6= ?@
7
> B9B "" 9@

4

"*

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node ! is its input feature, "*
§ Layer-# embedding gets information from nodes that

are # hops away

57

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! 8 3"!5"
a E

4 E 4

88?"

!)@ ""!9""971">?@:
48 7?@ 95" 4@ 4@

6V+ 487U?>"":$"97"$"4 8G

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Basic approach: Average information from
neighbors and apply a neural network

59

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Wk/&k !;m)k?);@

l&kOV@)@?.; !;m)k?);@

G0nJG

IG0JG
G0nJG

IG0JG

G0nJG

G0nJG

0IoJG IG0JG G0nJG

G0nJG

IG0JG

G0nJG

¡ Basic approach: Average neighbor messages
and apply a neural network

60

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after L
layers of neighborhood

aggregation
Non-linearity
(e.g., ReLU)

embedding of
" at layer #hBC = xB

zB = hB(D)

hB(E;0) = ;(WE N
F∈H(B)

hF(E)
N(D) + BEhB

(E)), ∀P ∈ {0, … , R − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Notice summation is a permutation
invariant pooling/aggregation.

678 7 68 B" D8 6"

! A " 6 7
8 7

m 95 80 -9 6"!

5B"6 7
8 7

m 95 80 -9 6"

8 7 " U8+

?= ! 6 7
8 7

! A " ! !
4

$ 8)-$8"

!"5" A " 6 7
8

7

m 9 4@ B" -9 6" @ 46 ?@ !"
a

5 8) / 6" 628) !6 ! 4@ ! ! 8 5"
7
AI 6 7

8 7 ?@ ""

@= "U@ @ 8 ?@ C?@) !@
4

8 4@

Message passing and neighbor aggregation in
graph convolution networks is permutation
equivariant.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

A
C

B

E
F

D

D A

D

B

C

Shared NN weights

Permutation invariant
aggregation

Target Node

Message passing and neighbor aggregation in
graph convolution networks is permutation
equivariant.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

C E

D

F

C

Shared NN weights

Permutation invariant
aggregation

E
D

F

B
A

C

Target Node The target node (blue) has
the same computation graph

for different order plans

$I

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.
6310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!": the hidden representation of node " at layer #
¡ $": weight matrix for neighborhood aggregation
¡ %": weight matrix for transforming hidden vector of

self
64

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h6(8) = x6

z6 = h6(:)
h6(;<0) = 7(W; <

=∈?(6)

h=(;)
N(;) + B;h6

(;)), ∀? ∈ {0. . D − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4!" C" "@ 8 " " 5B" >

?; ! " 8 $ 4@ 8 "@ 9?@ E !: "@

<@88
H

48I !@
4

8 5" @

¡ Many aggregations can be performed
efficiently by (sparse) matrix operations

¡ Let
¡ Then: ∑,∈.& ℎ,

(/) = A!,:H(/)
¡ Let) be diagonal matrix where
)!,! = Deg " = |. " |
§ The inverse of C: C!" is also diagonal:
C#,#!" = 1/|F G |

¡ Therefore,

65

Matrix of hidden embeddings 2(&'!)

3)
(&'!)

/(/) = [ℎ4(/)…ℎ|6|
(/)]7

U(E;0) = V20WU(E)@
2∈3(4)

ℎ2(56/)
|9(:)|

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue: self transformation

¡ In practice, this implies that efficient sparse
matrix multiplication can be used (CC is sparse)

¡ Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex

66

U(E;0) = ;(ZWU(E)2E
N +U E YEN)

where ZW = V20W
I(&) = [ℎ"(&)…ℎ|)|

(&)]*

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Node embedding H6 is a function of input graph
¡ Supervised setting: we want to minimize the loss
ℒ (see also Slide 15):

min
$
ℒ(&, (D!)

§ %: node label
§ ℒ could be L2 if % is real number, or cross entropy

if % is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!

6710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

= R
4

8 8 "* ?@) Z " 4!

6 7
8

7

?@ H ! "

=@ 4 @ B"

¡ “Similar” nodes have similar embeddings
ℒ = 8

8',8&
CE(8,,!, DEC :,, :!)

§ Where ZF,B = 1 when node < and " are similar
§ CE is the cross entropy (Slide 16)
§ DEC is the decoder such as inner product (Lecture 4)

¡ Node similarity can be anything from
Lecture 3, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
§ Node proximity in the graph

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)

69

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

!6 4@ 49 A "j 4@
4
9 B" "56 9@

678 7

6""5 4@ 49

Directly train the model for a supervised task
(e.g., node classification)
¡ Use cross entropy loss (Slide 16)

70

Encoder output:
node embedding

Classification
weights

Node class
labelSafe or toxic drug?

ℒ = <
6∈E

I6log(7(z6FM)) + 1 − I6 log(1 − 7 z6FM)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

?@

@): 488?8+

71

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

D=

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

!""" != ! D8 ,
6"

7
!

@ 4

" > !@ @f

72

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

F?;? g)@2f ?; GG87

73

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

! "C" 4@ =@ 678 7 7
6"!

!;/V2@?m& 3&)k;?;K
? B"B)

¡ The same aggregation parameters are shared
for all nodes:
§ The number of model parameters is sublinear in
|?| and we can generalize to unseen nodes!

74

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

,> E>

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

75

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

zD

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

!;/V2@?m& 3&)k;?;K G$`DG$ $ R !3C3"p ?= 678 7 !!7 " ? = "@

""" _ 7

76

Train with snapshot New node arrives
Generate embedding

for new node

¡ Many application settings constantly encounter
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

zD

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

'f"7?@>l?"&B$?"!?q"L

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs and
Transformers

7710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ How does GNNs compare to prominent
architectures such as Convolutional Neural
Nets, and Transformers?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 78

" 6""5

Convolutional neural network (CNN) layer with
3x3 filter:

79

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

CNN formulation: h#(+,") = 0(∑-∈/ # ∪{#}W+
-h-(+)), ∀+ ∈ {0, … , U − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Image OutputCNN
weights

X Y represents the 8 neighbor pixels of Y.

Convolutional neural network (CNN) layer with
3x3 filter:

80

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation (previous slide): h*(+,!) = ;(<-∑.∈0(*)
1!
(#)

0(*) + B+h*
(+)), ∀A ∈ {0, … , E − 1}

• CNN formulation: h*(+,!) = ;(∑.∈0 * ∪ * W+
.h.(+)), ∀A ∈ {0, … , E − 1}

if we rewrite: h*(+,!) = ;(∑.∈0 * <-
3h.(+) + B+h*(+)), ∀A ∈ {0, … , E − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

81

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%(&'() = 5(6)∑*∈,(%)

-"
($)

,(%) + B&h%
(&)), ∀; ∈ {0, … , > − 1}

CNN formulation: h%(&'() = 5(∑*∈,(%)6)
.h*(&) + B&h%(&)), ∀; ∈ {0, … , > − 1}

Key difference: We can learn different "+
. for different “neighbor” J for pixel * on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Convolutional neural network (CNN) layer with
3x3 filter:

82

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%(&'() = 5(6)∑*∈,(%)

-"
($)

,(%) + B&h%
(&)), ∀; ∈ {0, … , > − 1}

CNN formulation: h%(&'() = 5(∑*∈,(%)6)
.h*(&) + B&h%(&)), ∀; ∈ {0, … , > − 1}

Key difference: We can learn different "+
. for different “neighbor” J for pixel * on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

• CNN can be seen as a special GNN with fixed neighbor
size and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary

graphs with different degrees for each node.

! 9 4@ " = ! !@) !
4" " 4@ ! ! ! "

8$ B"

@ ! " 4@

Convolutional neural network (CNN) layer with
3x3 filter:

83

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h%(&'() = 5(6)∑*∈,(%)

-"
($)

,(%) + B&h%
(&)), ∀; ∈ {0, … , > − 1}

CNN formulation: h%(&'() = 5(∑*∈,(%)6)
.h*(&) + B&h%(&)), ∀; ∈ {0, … , > − 1}

Key difference: We can learn different "+
. for different “neighbor” J for pixel * on

the image. The reason is we can pick an order for the 9 neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), …, (1, 1)}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

• CNN can be seen as a special GNN with fixed neighbor
size and ordering.

• CNN is not permutation equivariant.
• Switching the order of pixels will leads to different

outputs.

Transformer is one of the
most popular
architectures that
achieves great
performance in many
sequence modeling tasks.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 84

[Attention is all you need. Vaswani et al., NeurIPS 2017]

Key component: self-attention
¡ Every token/word attends to all the other tokens/words via

matrix calculation.

Stanford studentI aam

9U L

Key component: self attention
¡ Every token/word attends to all the other

tokens/words via matrix calculation.

86

I

am

a Stanford

student

Text (Complete) Graph
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

A nice blog plot for this: https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Transformer layer can be seen as a
special GNN that runs on a fully-

connected “word” graph!
Since each word attends to all the other
words, the computation graph of a
transformer layer is identical to that of a GNN
on the fully-connected “word” graph.

ek)'f 9@@&;@?.; -&@T.k+ r e95 s

@): 48 @): 48

¡ In this lecture, we introduced
§ Basics of neural networks

§ Loss, Optimization, Gradient, SGD, non-linearity, MLP
§ Idea for Deep Learning for Graphs

§ Multiple layers of embedding transformation
§ At every layer, use the embedding at previous layer as

the input
§ Aggregation of neighbors and self-embeddings

§ Graph Convolutional Network
§ Mean aggregation; can be expressed in matrix form

§ GNN is a general architecture
§ CNN and Transformer can be viewed as a special GNN

8710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

?@ "@ =

"@ !" > $+8 "" ! B"

