Stanford CS224W:
How Expressive are Graph
Neural Networks?
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* Homework 1 due on Thursday (2/2)

* Based on course feedback, we will hold in-person
OHs every week on Wednesday 9-11 AM PT.
Location will be updated on the OH calendar.
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Recap: A General GNN Framework

TARGET NODE

l

A

/

INPUT GRAPH

e — oo

(2) Aggregation

GNN Layer1

% ¢ (1) Message
(3) Layer o gupU P AP yeyes sy PRS-

connectlvlty ................................... ‘ .........................

GNN Layer 2

v

(4) Graph augmentation

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 3



Recap: GNN Training Pipeline

Evaluation
metrics

Input Graph Node

Graph Neural embeddings /\

Network
W D Prediction | _—
— ; > > » Predictions Labels

|] |] head

PPPPPPPPPP eoo Loss
function

Implementation resources:
PyG provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design
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Theory of GNNs

How powerful are GNNs?

2/1

6/2023

Many GNN models have been proposed (e.g.,
GCN, GAT, GraphSAGE, design space).

. Kig FA. W8 BN .
What is the expressive power (ability to
X7

distinguish different graph structures) of these
GNN models?

How to desigh a maximally expressive GNN
model? IV



Background: A Single GNN Layer

We focus on message passing GNNs:
(1) Message: each node computes a message
m'"” = MSG® (h,(f_l)) ,u € {N(v) U v)
(2) Aggregation: aggregate messages from neighbors

hY) = A6 ({m{,u e N(v)}, mY)

(2) Aggregation

QY o ¢® (1) Message
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Background: Many GNN Models

Many GNN models have been proposed:
GCN, GraphSAGE, GAT, Design Space etc.

TARGET NODE

l

A
./ %) <

INPUT GRAPH

Different GNN models use different
neural networks in the box
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GNN Model Example (1)

GCN (mean-pool) [kipf and Welling ICLR 2017]

TARGET NODE

l

A
./ %) <

INPUT GRAPH

_ syt kA _
Element-wise mean pooling +

Linear + ReLU non-linearity
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GNN Model Example (2)

GraphSAGE (max-pool) (Hamiton et al. NeurlPS 2017]

TARGET NODE

l

A
./ %) <

INPUT GRAPH

MLP + element-wise max-pooling
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Note: Node Colors

We use node same/different colors to represent
nodes with same/different features. armitisre eneids;

For example, the graph below assumes all the nodes
. PERAMARIE Ands Embeo(o(inj

1 2

3

e

2 4 (HEA)
AT L iR AR T R

Key question: How well can a GNN distinguish
different graph structures?
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Local Neighborhood Structures

We specifically consider local neighborhood
structures around each node in a graph.

Example: Nodes 1 and 5
have different

neighborhood structures 2
because they have

different node degrees. /

(5 4
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Local Neighborhood Structures

We specifically consider local neighborhood
structures around each node in a graph.

2/16/2023

Example: Nodes 1 and 4
both have the same node

degree of 2. However, they 2

still have different ;
neighborhood structures

because their neighbors ‘/
have different node degrees. >

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.
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Local Neighborhood Structures

We specifically consider local neighborhood
structures around each node in a graph.

Example: Nodes 1 and 2 A @ T B 60k 4 R4
have the same FoARN T 1A PR 2

neighborhood structure (2)

because they are

147 symmetric within the /
graph.
5 4

3

Node 1 has neighbors of degrees 2 and 3.

Node 2 has neighbors of degrees 2 and 3.

And even if we go a step deeper to 2" hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)
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Local Neighborhood Structures

Key question: Can GNN node embeddings
distinguish different node’s local
neighborhood structures?

If so, when? If not, when will a GNN fail?

Next: We need to understand how a GNN
captures local neighborhood structures.

Key concept: Computational graph
HER

caw IRIA B A = B AT ELART S, Embedding 8] 5
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Computational Graph (1)

In each layer, a GNN aggregates neighboring node

embeddings.
A GNN generates node embeddings through a
computational graph defined by the neighborhood.

Ex: Node 1’s computational graph (2-layer GNN)

2
A

5
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Computational Graph (2)

Ex: Nodes 1 and 2’s computational graphs.
IRB R AN [HAEKEREL
FREATL

x A
/‘//H\ AR
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Computational Graph (3)

Ex: Nodes 1 and 2’s computational graphs.

But GNN only sees node features (not IDs):
GNN BE&l?Bﬂl]L_E(l:}

© 2 %
/T/ﬁ"f\ Th
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Computational Graph (4)

A GNN will generate the same embedding for
nodes 1 and 2 because:

Note: GNN does not

Computational graphs are the same. care about node ids, it
. . just aggregates features
Node features (colors) are identical. vectors of different nodes.

°
AR AD
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Computational Graph

In general, different local neighborhoods
define different computational graphs
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Computational Graph

el
Computational graphs are |den’acal to rooted

subtree structures around each node.

1 Rooted subtree structures ii7 2.

(defined by recursively unfolding
/ nelghborlng nodes from the root nodes)
5 /N
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Computational Graph

Cun BRI ES A = B 1 A E AR T 8 Embedding 8] Y

GNN‘s node embeddings capture rooted

subtree structures. sz covw: REVGTAFEART 2, b AR Enbeddiy
ABAR 1B %E NN E LR O

Most expressive GNN maps different rooted

subtrees into different node embeddings

(represented by different colors). Embedding
O O o
1 2 3 4 5
ARy AR Tt ARK
o0 1 2 4 2 51 (2 4 1 2 25 1535
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Recall: Injective Function

BAY - A L o - S
Function f: X — Y is injective if it maps

different elements into different outputs.
Intuition: f retains all the information about
input.

IWEFSEYEES
R eyakd LR 1A gL
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How Expressive 1s a GNN?

Most expressive GNN should map subtrees to

the node embeddmgs injectively.

e AV VR N a‘jﬁﬁlﬂ/ﬁ? 5, 451 A IE) Embedding Embedding space
w
d

® i
)<
: Subtrees
5

AR

1 2 4
\15124 2 512 4 251535/
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How Expressive 1s a GNN?

Key observation: Subtrees of the same depth
can be recursively characterized from the leaf
nodes to the root nodes.

X = ‘@8
From leaves AR R A RRR A From leaves

to the root ] to the root
(2 neighbors, i (1 neighbor,

4
ﬁ 3 neighbors) 3 neighbors) ﬁ

2 (5 3 5
2 neighbo% Neighbors 1 neighbor + Neighbors
1 9 11 (2 4 4 1 2 4
Input features Input features

are uniform are uniform
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How Expressive 1s a GNN?

If each step of GNN'’s aggregation can fully
retain the neighboring information, the
generated node embeddings can distinguish

different rooted subtrees.
38 AB v AE\ 6 A EVAR T2, 141 KR Embedding

Fully retain » (2 neighbors, i (1 neighbor, ¢
neighboring 3 neighbors) 3 neighbors)
information *

3 5

2 nelghbors* Qelghbors 1 neighbor + *Q\eighbors
| I\
4 1 2 4

Fully retain

neighboring
information Input features Input features

are uniform are uniform

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 25



How Expressive 1s a GNN?

In other words, most expressive GNN would
use aninjective neighbor aggregation| %sraxts
function at each step. =z 2 »1 £51%6 4541 044 Hask

Maps different neighbors to different embeddings.

Injective 1 4

neighbor $
aggregation

2 5

7S
Injective 7% +ik
neighbor I I\

4 1 2 4

aggregation ¢ & M © @

Input features Input features
are uniform are uniform
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How Expressive 1s a GNN?

NN BVRIZ RN = B4 YA EARP ‘EE““iifjaﬂ

Summary so far
To generate a node embedding, GNNs use a
computational graph corresponding to a subtree
rooted around each node.

Input graph Computational 1 Using iniect:

neighbor

@ 2 = Rooted _
subtree 2 5 aggregation
o - distinguish
/ ﬁ different
S} 4

164 subtrees

GNN can fully distinguish different subtree
structures if every step of its neighbor
aggregation is injective. %sigfrainds
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Stanford CS224W:
Designing the Most Powerful

Graph Neural Network




Expressive Power of GNNs

Key observation: Expressive power of GNNs
can be characterized by that of neighbor
aggregation functions they use.

A more expressive aggregation function leads to a
more expressive a GNN.

Injective aggregation function leads to the most
expressive GNN. #43%451%4%
Next:

Theoretically analyze expressive power of
aggregation functions.
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Neighbor Aggregation

Observation: Neighbor aggregatlton can be

abstracted@asﬂa%functlon over a muTtl set (a
t 61T
set with repeating elements).
Examples of
Equivalent multi-set
Neighbor Multi-set function [ ]
aggregation

Same color indicates the
same features.
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Neighbor Aggregation

Next: We analyze aggregation functions of
two popular GNN models

GCN (mean-pool) kipf & welling, IcLR 2017]

Uses element-wise mean pooling over neighboring node
features

EeE%T Mean ({xu}uEN(v) )

GraphSAGE (maX'pOC)l) [Hamilton et al. NeurlPS 2017]

Uses element-wise max pooling over neighboring node
features

ariidatt  Max ({xu}uEN(v) )
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Neighbor Aggregation: Case Study

GCN (mean-pool) [Kipf & Welling ICLR 2017]

Take element-wise mean, followed by linear
function and RelU activation, i.e., max(0, x).

Theorem [xu et al. ICLR 2019]

GCN'’s aggregation function cannot distinguish different
multi-sets with the same color proportion.
Failure case

A A
![ ]\ ![ ]\

Why?
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Neighbor Aggregation

For simplicity, we assume node features
(colors) are represented by one-hot encoding.

Example: If there are two distinct colors:

) =

This assumption is sufficient to illustrate how GCN
fails.
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Neighbor Aggregation: Case Study

GCN (mean-pool) «ipf & wellingIcLR 2017]
Failure case illustration

Same outputs!

@ =) ©

Linear + RelLU Linear + RelLLU

Element-wise- <0-5> (0-5>
mean-pool 0.5 0.5
(& o] [ ]

W6 GO0
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Neighbor Aggregation: Case Study

GraphSAGE (max-pool) Hamilton et al. NeurlPs 2017]
Apply an MLP, then take element-wise max.

Theorem [xu et al. ICLR 2019]

GraphSAGE’s aggregation function cannot distinguish
different multi-sets with the same set of distinct colors.

Failure case

A \ A
![ ]\ ![ ]\ ![ ]\

Why?
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Neighbor Aggregation: Case Study

GraphSAGE (max-pool) Hamilton et al. NeurlPs 2017]
Failure case illustration

The same outputs!

(1) ) )
emereme (0 (0)(o) () ©)6)G)

after MLP. =
O 0 ® O
MLP

[' ][ "']["']

36
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Summary So Far

We analyzed the expressive power of GNNs.
Main takeaways: <2
Expressive power of GNNs can be characterized by
that of the neighbor aggregation function.

Neighbor aggregation is a function over multi-sets
(sets with repeating elements)

GCN and GraphSAGE’s aggregation functions fail to
distinguish some basic multi-sets; hence not injective.

Therefore, GCN and GraphSAGE are not maximally
powerful GNNs.
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Designing Most Expressive GNNs

2/1

6/2023

Our goal: Design maximally powerful GNNs
in the class of message-passing GNNs.

This can be achieved by designing injective
neighbor aggregation function over multi-

sets.
B e 42 ) 44 A B G i
Here, we design a neural network that can

model injective multiset function.
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Injective Multi-Set Function

Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed
3s: Some non-

linear function
Some non- .
linear function ¢ Zf(X)

XES .
“——— Sum over multi-set

Go8) =» i) +/e) @)
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Injective Multi-Set Function

Proof Intuition: [Xu et al. ICLR 2019]

f produces one-hot encodings of colors. Summation of
the one-hot encodings retains all the information about

the input multi-set. Ch hr g
PR RE

f(x) fm R RARETEC
(2 P B4 &AL

e (o) (1) + () = G
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Universal Approximation Theorem

How to model @ and f in @()., s f(x)) ?

We use a

Theorem: Universal Approximation Theorem
[Hornik et al., 1989] 7 A% IA(AE 3Z

1-hidden-layer MLP with sufficiently-large hidden
dimensionality and appropriate non-linearity o(-)
(including ReLU and sigmoid) ca4n approximate any
continuous function to an arbltrary accuracy.

Input

2/16/2023

—

W, |o
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W2 Output
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Injective Multi-Set Function

We have arrived at a neural network that can
model any injective multiset function.

3 1

MLPg, (Z MLP; (x))

XES

In practice, MLP hidden dimensionality of 100 to
500 is sufficient.
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Most Expressive GNN

Graph Isomorphism Network (GIN) ixu etal. icLr 2019]

Apply an MLP, element-wise sum, followed by
another MLP.

MLPg, (Z MLP; (x))

XES

Theorem [xu et al. ICLR 2019]

GIN‘s neighbor aggregation function is injective.
No failure cases!
GIN is THE most expressive GNN|in the class of
message-passing GNNs we have introduced!
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Full Model of GIN

So far:

Weisfeiler- Lehman Kernel Rtk BiE Fatattiaatl
We now describe the full model of GIN by
relating it to/WL graph kernel|(traditional way
of obtaining graph-level features).

We will see how GIN is a “neural network” version
of the WL graph kernel.
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Relation to WL Graph Kernel

Recall: Color refinement algorithm in WL kernel.
A graph G with a set of nodes V.
Assign an initial color ¢(®) (v) to each node v.
Iteratively refine node colors by

c(k+1) (v) = HASH (C(k) (”)»{C(R) (u)}uezv(v))’

where HASH maps different inputs to different colors.

After K steps of color refinement, ¢ (v)
summarizes the structure of K-hop neighborhood
Hash: 58 ¢G5 60 4 41 2L
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Color Refinement (1)

Assign initial colors
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Color Refinement (2)

Injectively HASH the aggregated colors

(1 —3) (3)—(4) HASH table: Injective!
\ , 1,1 > 2
4 1,11 - 3
= & < 1,111 - 4
1,111 -- 5
; : @ @ ’
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Color Refinement (3)

Process continues until a stable coloring is
reached _

. R .
Two graphs are considered isomorphic if they
have the same set of colors.
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The Complete GIN Model

GIN uses a to model the
injective HASH function.

¢+ (v) = HASH (% ()} f{c® (u))

uEN(v))

Specifically, we will model the injective
function over the tuple:

(c® ) [{c® (u)}uEN(v)I)

Root node
features

Neighboring
node colors
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The Complete GIN Model

Theorem (xu etal.icLR 2019)
Any injective function over the tuple

Root nod
Root node (e wf{c® w)

can be modeled as

) Neighboring

UENW)[" hode features

MLPy | (1 +€) - MLP(c® ) + z MLP; (£ ()
UeEN(v)

where € is a learnable scalar.
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The Complete GIN Model

If input feature ¢(® (v) is represented as one-
hot, direct summation is injective. & feuwe2ironst

pa TR
o) *+ () * () = C)

We only need @ to ensure the injectivity.

GINConv (Ic(k)(v "{c(")(u)}uEN(v)I) = ML% ((1 +e)-c®w) + 2 c(k)(u)>

Root node UEN (V)

features  \eighboring node

features This MLP can provide “one-hot” input
feature for the next layer.
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The Complete GIN Model

GIN’s node embedding updates
A graph G with a set of nodes V.
Assign an initial vector ¢(?) (v) to each node v.
lteratively update node vectors by

¢+ (p) = GINConv ({C(k) (U):{C(k) (u)}ueN(v)})’

40wl Kemel dp% £AA
where GINConv maps different inputs to different embeddings.

After K steps of GIN iterations, ¢ (v) summarizes
the structure of K-hop neighborhood.
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GIN and WL Graph Kernel

GIN can be understood as differentiable neural
version of the WL graph Kernel:

Update target Update function
WL Graph Kernel  Node colors HASH

(one-hot)
GIN Node embeddings GINConv

(low-dim vectors)

Advantages of GIN over the WL graph kernel are:
At R AR, BB B X
Node embeddings are low-dimensional; hence, they can

capture the fine-grained similarity of different nodes.

Parameters of the update function can be learned for the
AR
downstream taSkS. ABIE T 450

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 53



Expressive Power of GIN

W LA A eA 8 LA
If two graphs can be distinguished by GIN, they can be

also distinguished by the WL kernel, and vice versa.
How powerful is this?

WL kernel has been both theoretically and

empirically shown to distinguish most of the real-
world graphs [caietal.1992].

Hence, GIN is also powerful enough to distinguish
most of the real graphs!
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Discussion: The Power of Pooling

Failure cases for mean and max pooling:

| | | | | |
"I, VS. /'-"\ "I’vs. /‘-"\ [ vs. T

(a) Mean and Max both fail (b) Max fails (¢) Mean and Max both fail
Colors represent feature values

Ranking by discriminative power:

- e
- -

Input sum - multiset mean - distribution max - set

55



Improving GNNs’ Power

Can the expressive power of GNNs be improved?

There are basic graph structures that existing GNN
framework cannot distinguish, such as difference in cycles.

Graphs Computational graphs

for nodes v, and v,:
’ @\ @ /&k 2

7N AN
[N /N /\ [\

GNNSs’ expressive power can b&improged to resolve
F b RBALIRE Cwnv e BE
the above problem. [vou etal. AAAI 2021, Li et al. NeurlPS 2020]

Stay tuned for Lecture 15: Advanced Topics in GNNs
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Summary of the Lecture

We design a neural network that can model
injective multi-set function|
We use the neural network for neighbor
aggregation function and arrive at GIN---the
most expressive GNN model.

The key is to use element-wise sum poolinq,
instead of mean-/max-pooling.

GIN is closely related to the WL graph kernel.
Both GIN and WL graph kernel can distinguish
most of the real graphs!
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Stanford CS224W:
When Things Don’t Go As Planned




General Tips

Data preprocessing is important:

Node attributes can vary a lot! Use normalization

E.g. probability ranges (0,1), but some inputs could have much
larger range, say (—1000,1000)

Optimizer: ADAM is relatively robust to learning rate
Activation function

RelLU activation function often works well

Other good alternatives: LeakyRelLU, PRelLU

No activation function at your output layer

Include bias term in every layer
Embedding dimensions:

32,64 and 128 are often good starting points
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Debugging Deep Networks

Debug issues: Loss/accuracy not converging
during training
Check pipeline (e.g. in PyTorch we need zero grad)

Adjust hyperparameters such as learning rate

Pay attention to weight parameter initialization
A3imal %

Scrutinize loss function!
Important for model development:

Overfit on (part of) training data:

With a small training dataset, loss should be essentially
close to 0, with an expressive neural network

Monitor the training & validation loss curve
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Resources on Graph Neural Networks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:

“'«t"l PyG DGL GraphNets Implements a variety
\ / of GNN architectures
O PyTorch TensorFlow

Auto-differentiation frameworks
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Resources on Graph Neural Networks

Tutorials and overviews:
Relational inductive biases and graph networks (Battagliaet al., 2018)
Representation learningon graphs: Methods and applications (Hamiltonetal., 2017)

Attention-based neighborhood aggregation:

Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)
Embedding entire graphs:

Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)

Embeddingentire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling
(Yinget al., 2018, Zhanget al., 2018)

Graph generationand relational inference (You et al., 2018; Kipf et al., 2018)
How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
Geometricdeep learning (Bronsteinetal., 2017; Monti et al., 2017)

Other GNN techniques:
Pre-training Graph Neural Networks (Hu et al., 2019)
GNNExplainer: Generating Explanationsfor Graph Neural Networks (Yinget al., 2019)
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