Stanford CS224W:
A General Perspective on
Graph Neural Networks




nnouncements

Colab 1 due this Thursday

Colab 2 out on Thursday (same day)

Thank you for the suggestion for in-person &
group office hours!

Group Office Hours for Homeworks

yler Nichols b g * o] 113
Y 3) General PIN STAR W. VIEWS

Beloved CAs,

Might it be possible to have some group office hours for general homework questions throughout the
week?

| understand that 1-1 meetings are important for students that need help with some work they've already
done or with their code but | suspect there are a lot of students who would like to ask general questions
(and listen to answers to questions from other students) about how to approach or start working through
homework questions,

Answering these general questions with batches of students seems likely to increase the efficiency of
office hours a lot. From past experience, students can also get answers to questions that will inevitably
pop up for them when they reach the corresponding problems on the assignments which will, in turn,
alleviate the pressure on future office hours, as well

We will be hosting 1 group OH in person a week.
CA Zhuoyi Huang will lead these.
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Recap: Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &
éob éob
Activation Q Q
function &
/ >

! ..
y
'

Output: Node embeddings.
Also, we can embed subgraphs,

graphs
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Recap: Graph Neural Networks

ldea: Node’s neighborhood defines a
computation graph
i

i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features
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Recap: Aggregate from Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
./ B «

INPUT GRAPH

Neural networks
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Recap: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! ./

INPUT GRAPH

®q ‘ . Q
poe N . Yaw ‘ﬁ. O A Y 'Y
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

Today: A General GNN Framework

(45 Jcﬁi*é hEH)

Rk é’}k (% h TR AR)

TARGET NODE
A

INPUT GRAPH

e — oo

AHRELES
(2) Aggregation

GNN Layer1 PR .
| APSSAEL Bk
% é (1) Message Tme Ymﬂf'wrc

(3) Layer
connectivity .
AL

AN A0 4F4E gh 1738 .
(4) Graph augmentation
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (1)

GNN Layer = Message + Aggregation
l * Different instantiations under this perspective
‘/"' * GCN, GraphSAGE, GAT, ...

e — A R

AUKELEA
(2) Aggregation

INPUT GRAPH

GNN Layer1
5 AR A R

% é (1) MessagETW ij rmatio rl
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (2)

N Connect GNN layers into a GNN
| * Stack layers sequentially
‘/ * Ways of adding skip connections

B H 3 E R Res et X AR IR

INPUT GRAPH

connect|V|ty ................................... ‘ .

GNN Layer 2
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (3)

Idea: Raw input graph # computational graph

TARGET NODE

| * Graph feature augmentation #F1Ei3%
‘/“ * Graph structure augmentation ¢z #ai73%

|

INPUT GRAPH

% ma o2

6' . .b
v i L L

Yo o @
00°
(4) Graph augmentation
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (4)

TARGET NODE
A

INPUT GRAPH

How do we train a GNN
« Supervised/Unsupervised % = P

objectives . .
 Node/Edge/Graph level ‘ i “
objectives
(We will discuss all of %Q’ Ej’@
these later in class) 'Y X
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

GNN Framework: Summary

TARGET NODE

l

A

/

INPUT GRAPH

e — oo

(2) Aggregation

GNN Layer 1 PR
: & (1) Message

connectlvlty ................................... ‘ .............................

2

GNN Layer 2

(4) Graph augmentation
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Stanford CS224W:
A Single Layer of a GNN




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A GNN Layer

GNN Layer = Message + Aggregation
l * Different instantiations under this perspective
‘/"‘ * GCN, GraphSAGE, GAT, ...

e — oo

(2) Aggregation

INPUT GRAPH

GNN Layer1 T
. % @ (1) Message

.......................................................................................................................

L T
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A Single GNN Layer

Compress a set of vectors into a single vector

Two-step process:

(1) Message Output node embedding hg)

1
Node v
1 [ e

(2) Aggregation

(2) Aggregation 1
& oy o2 (1) Message ‘|: ® O o :|'5 5 5 IRFAL
® O ® Input node embedding h{' ™, h!-Y

UEN(V)
(from node itself + neighboring nodes)
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Message Computation

Message function: (l) = MSGW (h(l 1))

Intuition: Each node will create a message, which will be
sent to other nodes later

Example: A Linear layer mfp — w(l)hg—l)
Multiply node features with weight matrix W

Node v
TARGET NODE .
o 2) Aggregation
® (2) Aggreg
® ./. %:é : (1) Message
INPUT GRAPH ‘ . .
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Message Aggregation

Intuition: Each node will aggregate the messages from
node v’s neighbors

h? = Ac6» ({mP,u € Nw)})
Example: Sum(-), Mean(-) or Max(-) aggregator
hg) = Sum({mg),u ENW)})

TARGETNODE (@) Node v I_
- . ................... 2) Asgregation
® ./. Qo ¢® (1) Message
g O
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Message Aggregation: Issue

I - B A6 Embedding{Z £, ARRY iz A RUA BTN
Information from node v itself could get lost

Computation of h,(f) does not directly depend on hff—l)

(I-1) : (D
Include h;; *~ when computing h
compute message from node v itself
Usually, a different message computation will be performed

D _ (1-1 O _ (I-1)
000 ¥ =-woOplv m)’ = Bh),

After aggregating from neighbors, we can
aggregate the message from node v itself

Via or
Then aggregate from node itself

h$ = coNcAT (AGG ({m{, u € N¥)});m{")

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 18



A Single GNN Layer

Putting things together:

(1) Message: each node computes a message
mg) = MSGW (hg_l)) ,u € {N(v) Uv}
(2) Aggregation: aggregate messages from neighbors

hY) = A6 ({m{,u e N(v)}, mY)

Adds expressiveness d itk
Often written as o(+): ReLU(-), Sigmoid(-), ...
Can be added to message or aggregation

(2) Aggregation

QY um ¢® (1) Message
o O O
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T. Kipf, M. Welling. , ICLR 2017

Classical GNN Layers: GCN (1)

0 - h(l—l)
h,’ =0 WY z -
v =9 INW)|

UEN(v)

How to write this as Message + Aggregation?

Message

e

(2) Aggregation

& oy o0 (1) Message
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Classical GNN Layers: GCN (2)

(1-1) 3
h(l) =0 z W(l)hu— i (2) Aggregation
’ U€EN (v) |N(U)| & o, ¢» (1) Message
Message:
Each Neighbor: mg) — W(l)hg_l) (1 the GCN paper they usea slightly

different normalization)
Noymalized Ao(jacencj Matrix

Aggregation: e
Sum over messages from neighbors, then apply activation

h,(,l) =0 (Sum ({mg),u S N(U)})) InGCN graph is assumed to have

self-edges that are included inthe
summation.

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 21



Hamiltonetal. , NeurlPS 2017

Classical GNN Layers: GraphSAGE

h =g (w@ . CONCAT (hf}‘”,AGG ({h,(f_l), Vu € N(v)})))

Message is computed within the AGG(")

Stage 1: Aggregate from node neighbors

h() |« AGG({h{ ™, vue Nw)}) Fasrsizh

Stage 2: Further aggregate over the node itself

h® ¢ (WO . coNcAT P [n® )
> v N(v)
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GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

AGG = z

Aggregation WEN(®)

h,(f_l)

IN(v)|| Message computation

Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(-)

AGG =Mean (

MLP

™), vu e N()})

Aggregation Message computation
LSTM: Apply LSTM to reshuffled of neighbors «:zetiztidizas

AGG =[ESTM ([h ™ vu € n(NW)])

Aggregation
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GraphSAGE: L2 Normalization

£, Normalization:

2/16/2023

Optional: Apply £, normalization to hg) at every layer

l h{" /
hl(,) W Vv € V where ||ull, = [X;u? (£2-norm)

Without £, normalization, the embedding vectors have
different scales (¥,-norm) for vectors

In some cases (not always), normalization of embedding
results in performance improvement

After £, normalization, all vectors will have the same

£5-norm
Ak 24 Fe AL B9 A 34 GO P
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Classical GNN Layers: GAT (1)

2/16/2023

l -1
hT(J) = O-(ZuEN(v) aqu(l) h‘l(,t ))

1
(04 —

v INW)|
of node u’s message to node v

is the weighting factor (importance)

= a,, is defined

= All neighbors u € N (v) are equally important
tonode v  AR4IE %k aRER (dEaERR)
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Classical GNN Layers: GAT (2)

) _
hv - O-(ZuEN(v)

avu

w®n{ ™)

Not all node’s neighbors are equally important
KA 2 EA”
Attention is inspired by cognitive attention.

The attention a,,, focuses on the important parts of
the input data and fades out the rest.

Idea: the NN should devote more computing power on that
small but important part of the data.

Which part of the data is more important depends on the
contextand is learned through training.

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 26



[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors a,,,, to be
learned? &t #3455k ARE

Goal: Specify arbitrary importance to different
neighbors of each node in thel§raph

Idea: Compute embedding h1(, of each node in the
graph following an :
Nodes attend over their neighborhoods’ message

Implicitly specifying different weights to different nodes
in a neighborhood
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Attention Mechanism (1)

2|7 %
Let a,,, be computed as a byprroduct of an

attention mechanism a:

(1) Let a compute attention coefficients e,,,, across
pairs of nodes u, v based on their messages:
Cpy = a(w(l)hg_l),w(l)hg_l)) a: fiiE AR

e, indicates the importance of u's message to node v
2EAREL

eap = a(WOR™D wOR{™)
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Attention Mechanism (2)

FEARE
Normalize e, into the final attention weight «,,,,

Use the softmax function, so that ., c y(y) @y = 1:

— exp(eUU)
Dike N(v) exp(eyx)
Weighted sum based on the final attention weight
hoz K40

l -1
b, = 6(uenc) CouWOhy )

Wleighted sum using g, Uuc, Aap: |:| A
-1 [=1) W«
h,gl) — O'(CYABW(Dhé )+aACw(l)hg‘ )+ p ; ............. |:| h(l_l)
C

a,pW®Phy ™) “AD/
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Attention Mechanism (3)

What is the form of attention mechanism a?

The approach is agnostic to the choice of a

E.g., use a simple single-layer neural network i% 4% /3£ 5 sigreid
a have trainable parameters (weights in the Linear layer)

o H e = a(WORSD, wORD)
LD |1 5i7{§f"/7":%k = Linear (Concat (W(l) hlgll_l),w(l)hg_l)))
A B (#72)

Parameters of a are trained jointly:

Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net W) in an end;’gﬂlend
fashion e
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Attention Mechanism (4)

%k FEAMA] AR DEAR M ad B B adiB s -FARE
Multi-head attention: Stabilizes the learning
process of attention mechanism # &tk BARFRI:®

Create (each replica
with a different set of parameters):

hz(yl) 1] = 0(Quenw) oy, WU h(l 1)) « ARAE X AL 7

hi(ﬂl) 2] = 0(QLuen) o WU h(l 1)) S

h':(zl) 3] = 0(Quenw) avuw(l)h(l 1)) « % Fg B
Yy &Y

By concatenation or summation
h{’ = AGGMYP[1], h{[2], h{[3])
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Benefits of Attention Mechanism

B2, ¥T
Key benefit: Allows for (implicitly) speciﬁfying different
importance values («,,,,) to different neighbors

Computationally efficient: 1% 5zC
Computation of attentional coefficients can be parallelized
across all edges of the graph
Aggregation may be parallelized across all nodes
Storage efficient: #fisgeC
Sparse matrix operations do not require more than
O(V + E) entries to be stored  casssgnz, 5okt iai
Fixed number of parameters, irrespective of graph size
Localized: 5

]

Only attends over local network neighborhoods
Inductive capability: /34421
It is a shared edge-wise mechanism %5 -1 ad
It does not depend on the global graph structure # ;< z/$rH
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Stanford CS224W:
GNN Layers in Practice




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice
18 A (;/v/\/)%ﬁii)fﬁ\

A suggested GNN Layer

v
We can often get better ([ Linear
performance by considering a BatC:Norm
general GNN layer design v
Transformation - Dropout
Concretely, we can include . v
. Activation
modern deep learning modules 7
that proved to be useful in many . Atte:“"”
domains Aggregation

v
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J.You,R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice

Batch Normalization: A suggested GNN Layer

- . v
Stabilize neural network training T Tnear
. %
DfOpOUt- BatchNorm
Prevent overfitting v
Transformation ~ Dropout
Attention/Gating: v
] Activation
Control the importance of a message v
_ | Attention
More: >
Any other useful deep learning modules Aggregation

v
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S. Loffe, C.Szegedy. ,ICML 2015

Batch Normalization

Goal: Stabilize neural networks training
Idea: Given a batch of inputs (node embeddings)

Re-center the node embeddings into zero mean

. . : . BIER
Re-scale tt;)eb variance into unit variance ﬁ;;ﬁi/rﬁiéﬁtqﬁ.ﬁﬁi{
Y O = R
EOMADHEOE |
Input: X € RV*P Step 1: W= Nzxi,j
N node embeddings Compute the i=1
mean and variance " N i
Trainable Parameters: over N embeddings : o} = NE(XU —w)"
H '=1 H
Y,BERD Wéif/ﬁlll&iﬁik .................. St -
Step 2: e Xi,j — W
iy~ —
Output: Y € RV*P o7 +e
Normalized node embeddings _
Yij =v;Xij+ B
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Srivastava et al. ,JMLR 2014

Dropout

Goal: Regularize a neural net to prevent overfitting.
Idea:

During training: with some probability p, randomly set
neurons to zero (turn off)

During testing: Use all the neurons for computation

Dropout

ﬁ

A}
X
N

Removed neurons
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Dropout for GNNs

In GNN, Dropout is applied to the x
linear layer in the message function [ | (?)Aseresation

Soccossacosancnancnos;

| &) _ o | (1) Message

A simple message function with linear ° ®

layer: =

Dropout

ﬁ

Visualization of a linear layer
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Activation (Non-linearity)

Rectified linear unit (ReLU)
ReLU(x;) = max(x;,0)
Most commonly used
Sigmoid
1
o(x;) = 1+e7X
Used only when you want to restrict the
range of your embeddings
Parametric ReLU Leoky RelU
PReLU(x;) = max(x;,0) + a;min(x;, 0)
a; is a trainable parameter
Empirically performs better than RelLU

0
ylk
0 X

y =ax
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GNN Layer in Practice

Modern deep learning
modules can be included into a GNN A GNN Layer
layer for better performance v

Linear

Y
BatchNorm

v

Transformation - Dropout

v

Activation

You can 2

Attention

explore diverse GNN designs or try ¥

out your own ideas in GraphGym Aggreflation
8.9 ik
MR AR LA AAEAE
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Stanford CS224W:
Stacking Layers of a GNN




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

Stacking GNN Layers

B How to connect GNN layers into a GNN?
| * Stack layers sequentially

A

‘/ * Ways of adding skip connections

e — oo

GNN Layer1

INPUT GRAPH

connectlwty ................................... ‘ .

GNN Layer 2
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Stacking GNN Layers

How to construct a Graph Neural Network?
The standard way: Stack GNN layers sequentially
Input: Initial raw node feature

Output: Node embeddings after L GNN layers

{

GNN Layer

b

GNN Layer

S

GNN Layer

v
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The Over-smoothing Problem

CNN B R AR 5

GNN suffers from

the over-smoothing problem

The over-smoothing problem: all the node

This is bad because we want to use node

embeddings converge to the same value *ff‘éﬂ
Embed inj AE1%]

embeddings to differentiate nodes
Why does the over-smoothing problem

happen?
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Receptive Field of a GNN

G AVE % &)

the set of nodes that determine
the embedding of a node of interest

In a K-layer GNN, each node has a receptive field of
K-hop neighborhood

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN
Q O Node of interest Q O Node of interest Q O Node of interest
\ < @ Receptive field ‘ ® Qo ® Receptive field ‘ . @ © Receptive field
‘ |" O Other nodes '|Y O Other nodes \ | |" O Other nodes
Ou
=\ i
O3
‘ O/ v, : 0) ; " o4
o= »
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Receptive Field of a GNN

Receptive field overlap for two nodes

The shared neighbors quickly grows when we
increase the number of hops (num of GNN layers)

1-hop neighbor overlap 2-hop neighbor overlap 3-hop neighbor overlap
Only 1 node About 20 nodes Almost all the nodes!
Q o O Nodes of interest Q o O Nodes of interest Q ® O Nodes of interest
\ ~ @ Shared neighbors A ¢ @ Shared neighbors o ¢ @ Shared neighbors

O Other nodes ‘ O Other nodes \ O Other nodes
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Receptive Field & Over-smoothing

2/16/2023

We knew the embedding of a node is determined
by its
If two nodes have highly-overlapped receptive fields, then
their embeddings are highly similar
— nodes will have highly-
overlapped receptive fields 2 node embeddings

will be highly similar = suffer from the over-

: i £ 4R w6 8. 2 AAEA 61t E
SmOOthmg prOblem ATEARE T FBAK 8 Embedding

how do we overcome over-smoothing problem?

Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 47



Design GNN Layer Connectivity

KEL L RESEAR G GV E
What do we learn from the over-smoothing problem?
Lesson 1: Be cautious when adding GNN layers

Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

Step 1: Analyze the necessary recepglve field to solve your
problem. E.g., by computing the diameter of the graph

Step 2: Set number of GNN layers L to be a bit more than the
receptive field we like. Do not set L to be unnecessarily
large! IDEA: AAutoml B2A 3B FAL 64 L

Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 48



Expressive Power for Shallow GNNs

How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within

each GNN layer  cww 2 89A3[ ik An R EAD R 45
In our previous examples, each transformation or
aggregation function only include one linear layer

We can make aggregation / transformation become a
deep neural network!

(2) Aggregation

If needed, each box could __—
include a 3-layer MLP e &L (1) Transformation

Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu

2/16/2023 49



Expressive Power for Shallow GNNs

4l 32/ Bl 3R B
How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

A GNN does not necessarily only contain GNN layers

E.g., we can add MLP layers (applied to each node) before and after
GNN layers, as pre-process layers and post-process layers

"""“',I'L'F',’t;y; """""" Pre Pre-processing layers: Important when
5 MLPtayer Process encoding node features is necessary.
i — e — E.g., when nodes represent image§/text
GNN Layer A 32 %’#?\ ?iik:j/%
X — Post-processing layers: Important when
) reasoning / transformation over node
GNN Layer embeddings are needed
N evryrwes I - E.g., graph classification, knowledge g,rap'hs
‘ v process | 5“&‘%"5‘ Emben(o(inj LR iR
WPl | R In practice, adding these layers works great!
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He etal. , CVPR 2015

Design GNN Layer Connectivity

What if my problem still requires many GNN layers?
Lesson 2: Add skip connections in GNNs._ B RS BT A2

Observation from over-smoothing: Node em beddmgs in
earlier GNN layers can sometimes better differentiate nodes

Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

it Setiiii ; Duplicate

- | MLP Layer ] ) -

— prlztrtee}zss 5 ) into two

layers . branches

::'.'.’.'.'.'.'.'.'.'.'.'. '.'.'.'.'.'.'.1'.'.'.:'.'.'.1'.1'.'.'.'.'.'.'.’.'.'.'.1'.1'.; X 3 Idea of Skip connections:
| GNNL : E - .

g g weight layer Before adding shortcuts:

i ip | |

comeaion, 00 T x F(x)

A identity  After adding shortcuts:
;:::::::h.ﬂ':li:F.;'I_'..'.'.'.'.'.'.'.'.'S.'.':::::::::::::::::::é f(x) —nl— X F(X) + X

[ MLP Layer | s .. Sum two R H T2 R, Res Vet 1EX 5 1 i

layers branches
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Idea of Skip Connections

Why do skip connections work? RE:HTZR Resuet € A1X
Intuition: Skip connections create a mixture of models
N skip connections = 2" possible paths A ARG
Each path could have up to N modules  w: 55, EAZ IENEL

We automatically get a mixture All the possible paths:
of shallow GNNs and deep GNNs ~ 2*2*2=2°=8

Path 2: sklp this module

Building block

Skip
connection

Residual
module

Path 1: mcludethls module —
(a) Conventional 3-block residual network (b) Unraveled view of (a)

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016
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Example: GCN with Skip Connections

A standard GCN layer pyrr——
]—"(x) J relu <
(l—]_) weight layer identity
(l) — (l) hu F(x)+x
hv =0 (ZuEN(U)W IN (v)| (o) +
° T = 1 2 + _______________________________
This is our F(X) vy B
v process
MLP Layer layers
. . . “"-'-'-‘-'-‘-'-‘-‘-'-i‘-:—.:—:—.:—:—.:—:—.:—.‘-‘-'-'-‘-'-‘-'-'-'-'-'-‘-'-‘-'—'-'—'—‘-'-'—‘-'
A GCN layer with skip connection GNN Layer
o _
g GNN Layer | Sklp. ;
O D) hg_l) (1-1) V‘.::::::::::::::i connection:
h,” =0 (ZueN(v) W e T ) R
F (X) + MLP Layer Post-
. : 2 rocess
RE 42 % BRAY i | MLP Layer p|ayer3

skip connection ; f
p comnectiont % T N PO ——
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Xu etal.

, ICML 2018

Other Options of Skip Connections

Other options: Directly
skip to the last layer

The final layer directly

aggregates from the all the
node embeddings in the
previous layers

2/16/2023 Jure

Input: hf,o)
I

\ 2
GNN Layer

h{"

Y
GNN Layer

(2)
h, v
GNN Layer

hgg)E:

Layer aggregation
Concat/Pooling/LSTM

v

Output: hg mal)

Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu
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Stanford CS224W:
Graph Manipulation in GNNs




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

General GNN Framework

Idea: Raw input graph # computational graph it &%

TARGET NODE

| * Graph feature augmentation =2 & 4 4342% 55
‘/“ e Graph structure manipulation &¢#7:% %

% ma o2

#. . .b
£ i SR

Yo o @
009
(4) Graph manipulation
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Why Manipulate Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level: & 5 4542 E @
The input graph lacks features = feature augmentation
Structure level: AT ER
The graph is too sparse = inefficient message passing 4%

The graph is too dense = message passing is too costly v

The graph is too large = cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
Bas 008 AATHL MATHR R HEA
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Graph Manipulation Approaches

Graph Feature manipulation
The input graph lacks features = feature
augmentation

Graph Structure manipulation

| i
The graph is too sparse = Add virtual nodes / edges

The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

Will cover later in lecture: Scaling up GNNs
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Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix

Standard approaches: RAAHERE I
a) Assign constant values to nodes
TR bTAEE T K 0 BEAE
1 v ]
1 . 1

INPUT GRAPH
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Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
b) Assign unique IDs to nodes =fi-10¢m%

These IDs are converted into one-hot vectors

2 One-hot vector for node with ID=5
1a 3 ID=5
|
4 / 6 [OI 0) 0) 0) 1) 0]

5 Y
INPUT GRAPH Total number of IDs = 6
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Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature

One-hot node feature

Expressive power

Meﬁcélli_um. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodesintroduce new
IDs, GNN doesn’t know how to
embed unseen IDs & %2 EFhF 2

Computational
cost

Low. Only 1 dimensional feature
e BT KE AT

High. High dimensionalfeature,
cannot apply to large graphs one-hot

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

2/16/2023
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Feature Augmentation on Graphs

Why do we need feature augmentation?
(2) Certain structures are hard to learn by GNN
Example: Cycle count feature (i’;ﬁ;i;;ﬁ;féwi

Can GNN learn the length of a cycle that v, resides in?

Unfortunately, no

V1 residesin a cycle with length 3 v, residesin a cycle with length 4

(%
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Feature Augmentation on Graphs

Because all the nodes in the graph have degree of 2 s+ 4 7.2 FI#
PEdEA TS /’g,&#%m:"

The computational graphs will be the same binary tree

+t fér & 24 AR [5) ChaAR#AERD

V1 residesin a cycle V1 residesin a cycle : _

with length 3 with length 4 The computational
graphs for node v,

I i are alwaysthe same
ERR PO mA % 8. 6] %
V4 residesin a cycle with infinitelength
M\ (i) M\
O O & U O

Tt G BE Ik BEA
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J.You, J. Gomes-Selman, R.Ying, J. Leskovec. , AAAI 2021

Feature Augmentation on Graphs

(2) Certain structures are hard to learn by GNN

Solution: L
AAATAS B E T R B EATAE
We can use cycle count as augmented node features

We start Augmented node feature for v, Augmented node feature for v4
e star
fromeyde [0, 0,0, 1, 0, 0] [0,0,0,0,1, 0]
with length O
t t
V1 resides in a cycle with length 3 V4 residesin a cycle with length 4

(%
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Feature Augmentation on Graphs

(2) Certain structures are hard to learn by GNN
Other commonly used augmented features:

Clustering coefficient Node Degree
PageRank
Centrality
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Add Virtual Nodes [ Edges

Ao JE S 3

Common approach: Connect 2-hop neighbors via
virtual edges

Intuition: Instead of using adj. matrix A for GNN

computation, use
AE - (AAT) Authors  Papers
ATROVRTR
Use cases: Bipartite graphs

Author-to-papers (they authored)

2-hop virtual edges make an author-author
collaboration graph
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Add Virtual Nodes [ Edges

The virtual node will connect to all the

nodes in the graph The virtual
srap node ‘

Suppose in a sparse graph, two nodes have
shortest path distance of 10

After adding the virtual node, all the nodes I
will have a distance of 2
Node A - Virtual node — Node B /

Benefits: Greatly improves message

INPUT GRAPH

passing in sparse graphs s 6 enbedding ToAEA L 67 Enbedliry
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Hamiltonetal. , NeurlPS 2017

Node Neighborhood Sampling

All the nodes are used for message passing

TARGET NODE .A‘:.

l K A
A K
K A .
o
A <« D TETTTTTTEETTRTTTTE ‘V

INPUT GRAPH e

(Randomly) sample a node’s
neighborhood for message passing
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Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

Only nodes B and D will pass message to A

TARGET NODE

l

0“
*
A

A <«
\

INPUT GRAPH
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Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

Only nodes C and D will pass message to A

TARGET NODE

l
.

S

INPUT GRAPH
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Ying et al. , KDD 2018

Neighborhood Sampling Example

458 A Epoch KAF R B 64T 1K
In expectation, we can get embeddings similar
to the case where all the neighbors are used

Benefits: Greatly reduce computational cost

' ice i R B AALAR (R A4
And in practice it works great! YREIAARE AR

________ A
ARGET NODE ® A‘:.
| € @
a
@ ' @ ‘ x e ‘
N o ‘ ..... 4. .............
f ‘ v. - ‘
X ®
oy
INPUTGRAPH . . e A
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Summary of the lecture

Recap: A general perspective for GNNs
GNN Layer:

Transformation + Aggregation

Classic GNN layers: GCN, GraphSAGE, GAT
Layer connectivity:

Deciding number of layers

Skip connections
Graph Manipulation:

Feature augmentation

Structure manipulation

Next: GNN objectives, GNN in practice
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