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 Colab 1 due this Thursday
 Colab 2 out on Thursday (same day)
 Thank you for the suggestion for in-person & 

group office hours!

▪ We will be hosting 1 group OH in person a week. 
CA Zhuoyi Huang will lead these.
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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs



Idea: Node’s neighborhood defines a 
computation graph
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Determine node 
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features



 Intuition: Nodes aggregate information from 
their neighbors using neural networks
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Neural networks



 Intuition: Network neighborhood defines a 
computation graph
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Every node defines a computation 
graph based on its neighborhood!
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
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(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections
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(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation
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(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised 

objectives
• Node/Edge/Graph level 

objectives
(We will discuss all of 
these later in class)
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



 Idea of a GNN Layer:
▪ Compress a set of vectors into a single vector
▪ Two-step process:
▪ (1) Message
▪ (2) Aggregation
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Input node embedding 𝐡𝑣
𝑙−1 , 𝐡𝑢∈𝑁(𝑣)

𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

(2) Aggregation

(1) Message

Node 𝒗
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 (1) Message computation
▪ Message function: 
▪ Intuition: Each node will create a message, which will be 

sent to other nodes later

▪ Example: A Linear layer 𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1

▪ Multiply node features with weight matrix 𝐖 𝑙
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(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1



 (2) Aggregation
▪ Intuition: Each node will aggregate the messages from 

node 𝑣’s neighbors

▪ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

▪𝐡𝑣
𝑙 = Sum({𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣
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(2) Aggregation

(1) Message

Node 𝒗

#)**



𝐡𝑣
𝑙 = CONCAT AGG 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙

 Issue: Information from node 𝑣 itself could get lost
▪ Computation of 𝐡𝑣

(𝑙) does not directly depend on 𝐡𝑣
(𝑙−1)

 Solution: Include 𝐡𝑣
(𝑙−1) when computing 𝐡𝑣

(𝑙)

▪ (1) Message: compute message from node 𝒗 itself
▪ Usually, a different message computation will be performed

▪ (2) Aggregation: After aggregating from neighbors, we can 
aggregate the message from node 𝒗 itself
▪ Via concatenation or summation
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𝐦𝑣
(𝑙) = 𝐁 𝑙 𝐡𝑣

𝑙−1𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1

First aggregate from neighbors

Then aggregate from node itself

% E 07 *-7 "- *;F/GG<8H "- 0*
) I'0* "C* <-9 J*'K3* "- '0 5J*



(2) Aggregation

(1) Message

 Putting things together:
▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness
▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
▪ Can be added to message or aggregation
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𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙
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 (1) Graph Convolutional Networks (GCN)

 How to write this as Message + Aggregation?
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Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message



 (1) Graph Convolutional Networks (GCN)

 Message: 

▪ Each Neighbor: 𝐦𝑢
(𝑙) = 1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

 Aggregation:
▪ Sum over messages from neighbors, then apply activation

▪ 𝐡𝑣
𝑙 = 𝜎 Sum 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣
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Normalized by node degree
(In the GCN paper they use a slightly 
different normalization)

(2) Aggregation

(1) Message

In GCN graph is assumed to have 
self-edges that are included in the 
summation.
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 (2) GraphSAGE

 How to write this as Message + Aggregation?
▪ Message is computed within the AGG ⋅
▪ Two-stage aggregation
▪ Stage 1: Aggregate from node neighbors

▪ Stage 2: Further aggregate over the node itself
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𝐡𝑁(𝑣)
(𝑙) ← AGG 𝐡𝑢

(𝑙−1),∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙) ← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣

𝑙−1 ,𝐡𝑁(𝑣)
(𝑙) )

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017
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 Mean: Take a weighted average of neighbors

 Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

 LSTM: Apply LSTM to reshuffled of neighbors

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

AGG = Mean({MLP(𝐡𝑢
(𝑙−1)), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1), ∀𝑢 ∈ 𝜋 𝑁 𝑣 ])

Message computation

Message computation

Aggregation

Aggregation

Aggregation
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 ℓ2 Normalization: 
▪ Optional: Apply ℓ2 normalization to 𝐡𝑣

(𝑙) at every layer

where ( -norm)

▪ Without ℓ2 normalization, the embedding vectors have 
different scales (ℓ2-norm) for vectors

▪ In some cases (not always), normalization of embedding 
results in performance improvement 

▪ After ℓ2 normalization, all vectors will have the same 
ℓ2-norm
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 (3) Graph Attention Networks

 In GCN / GraphSAGE

▪ 𝛼𝑣𝑢 =
1

𝑁 𝑣
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
▪⟹ 𝛼𝑣𝑢 is defined explicitly based on the 

structural properties of the graph (node degree)
▪⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important 

to node 𝑣

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))
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Attention weights
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 (3) Graph Attention Networks

Not all node’s neighbors are equally important
▪ Attention is inspired by cognitive attention. 
▪ The attention 𝜶𝒗𝒖 focuses on the important parts of 

the input data and fades out the rest. 
▪ Idea: the NN should devote more computing power on that 

small but important part of the data. 
▪ Which part of the data is more important depends on the 

context and is learned through training.

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))
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Attention weights
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Can we do better than simple 
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be 
learned?

 Goal: Specify arbitrary importance to different 
neighbors of each node in the graph

 Idea: Compute embedding 𝒉𝑣
(𝑙) of each node in the 

graph following an attention strategy:
▪ Nodes attend over their neighborhoods’ message
▪ Implicitly specifying different weights to different nodes 

in a neighborhood
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]
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 Let 𝛼𝑣𝑢 be computed as a byproduct of an 
attention mechanism 𝒂:
▪ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across 

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢

(𝑙−1),𝐖(𝑙)𝒉𝑣
(𝑙−1))

▪ 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬message to node 𝒗
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𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1))
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▪ Normalize 𝑒𝑣𝑢 into the final attention weight 𝜶𝒗𝒖
▪ Use the softmax function, so that σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

▪ Weighted sum based on the final attention weight 
𝜶𝒗𝒖

𝐡𝑣
(𝑙) = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢

(𝑙−1))
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𝛼𝐴𝐵
Weighted sum using 𝛼𝐴𝐵 , 𝛼𝐴𝐶 , 𝛼𝐴𝐷:
𝐡𝐴
(𝑙) = 𝜎(𝛼𝐴𝐵𝐖(𝑙)𝐡𝐵

(𝑙−1)+𝛼𝐴𝐶𝐖(𝑙)𝐡𝐶
(𝑙−1)+ 

𝛼𝐴𝐷𝐖(𝑙)𝐡𝐷
(𝑙−1))

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷
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 What is the form of attention mechanism 𝒂?
▪ The approach is agnostic to the choice of 𝑎
▪ E.g., use a simple single-layer neural network
▪ 𝑎 have trainable parameters (weights in the Linear layer)

▪ Parameters of 𝑎 are trained jointly:
▪ Learn the parameters together with weight matrices (i.e., 

other parameter of the neural net 𝐖(𝑙)) in an end-to-end 
fashion
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𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1),𝐖(𝑙)𝐡𝐵

(𝑙−1)
𝐡𝐴
(𝑙−1) 𝐡𝐵

(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵
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 Multi-head attention: Stabilizes the learning 
process of attention mechanism
▪ Create multiple attention scores (each replica 

with a different set of parameters):

▪ Outputs are aggregated:
▪ By concatenation or summation

▪ 𝐡𝑣
(𝑙) = AGG(𝐡𝑣

(𝑙) 1 , 𝐡𝑣
(𝑙) 2 , 𝐡𝑣

(𝑙) 3 )
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𝐡𝑣
(𝑙)[1] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢1 𝐖(𝑙)𝐡𝑢

(𝑙−1))

𝐡𝑣
(𝑙)[2] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢2 𝐖(𝑙)𝐡𝑢

(𝑙−1))

𝐡𝑣
(𝑙)[3] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢3 𝐖(𝑙)𝐡𝑢

(𝑙−1))
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 Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

 Computationally efficient: 
▪ Computation of attentional coefficients can be parallelized 

across all edges of the graph
▪ Aggregation may be parallelized across all nodes

 Storage efficient: 
▪ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

▪ Fixed number of parameters, irrespective of graph size
 Localized:
▪ Only attends over local network neighborhoods

 Inductive capability: 
▪ It is a shared edge-wise mechanism
▪ It does not depend on the global graph structure
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 In practice, these classic GNN 
layers are a great starting point
▪ We can often get better 

performance by considering a 
general GNN layer design 

▪ Concretely, we can include 
modern deep learning modules 
that proved to be useful in many 
domains
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer
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 Many modern deep learning modules can be 
incorporated into a GNN layer
▪ Batch Normalization:
▪ Stabilize neural network training

▪ Dropout:
▪ Prevent overfitting

▪ Attention/Gating:
▪ Control the importance of a message

▪ More:
▪ Any other useful deep learning modules
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer



 Goal: Stabilize neural networks training
 Idea: Given a batch of inputs (node embeddings)
▪ Re-center the node embeddings into zero mean 
▪ Re-scale the variance into unit variance
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𝛍𝑗 =
1
𝑁෍

𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝐷

𝑁 node embeddings

Trainable Parameters: 
𝛄, 𝛃 ∈ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝐷

Normalized node embeddings

𝛔𝑗2 =
1
𝑁
෍
𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

෡𝐗𝑖,𝑗 =
𝐗𝑖,𝑗 − 𝛍𝑗

𝛔𝑗
2 + 𝜖

𝐘𝑖,𝑗 = 𝛄𝑗෡𝐗𝑖,𝑗 + 𝛃𝑗

Step 1: 
Compute the
mean and variance 
over 𝑵 embeddings

Step 2:
Normalize the feature 
using computed mean 
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015
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 Goal: Regularize a neural net to prevent overfitting.
 Idea: 
▪ During training: with some probability 𝑝, randomly set 

neurons to zero (turn off)
▪ During testing: Use all the neurons for computation
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Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout



 In GNN, Dropout is applied to the 
linear layer in the message function
▪ A simple message function with linear 

layer: 𝐦𝑢
(𝑙) = 𝐖 𝑙 𝐡𝑢

𝑙−1
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Dropout
𝐡𝑢

𝑙−1 𝐦𝑢
(𝑙)

𝐖 𝑙

Visualization of a linear layer

(2) Aggregation

(1) Message



Apply activation to 𝒊-th dimension of 
embedding 𝐱
 Rectified linear unit (ReLU)

ReLU 𝐱𝑖 = max(𝐱𝑖, 0)
▪ Most commonly used

 Sigmoid

▪ Used only when you want to restrict the 
range of your embeddings

 Parametric ReLU
PReLU 𝐱𝑖 = max 𝐱𝑖, 0 + 𝑎𝑖min(𝐱𝑖, 0)

𝑎𝑖 is a trainable parameter
▪ Empirically performs better than ReLU
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 Summary: Modern deep learning 
modules can be included into a GNN 
layer for better performance

 Designing novel GNN layers is still 
an active research frontier!

 Suggested resources: You can 
explore diverse GNN designs or try 
out your own ideas in GraphGym
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



 How to construct a Graph Neural Network?
▪ The standard way: Stack GNN layers sequentially
▪ Input: Initial raw node feature 𝐱𝑣
▪ Output: Node embeddings  𝐡𝑣

(𝐿) after 𝐿 GNN layers
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𝐡𝑣
(0) = 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)
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 The Issue of stacking many GNN layers
▪ GNN suffers from the over-smoothing problem

 The over-smoothing problem: all the node 
embeddings converge to the same value
▪ This is bad because we want to use node 

embeddings to differentiate nodes
 Why does the over-smoothing problem 

happen?
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 Receptive field: the set of nodes that determine 
the embedding of a node of interest
▪ In a 𝑲-layer GNN, each node has a receptive field of 
𝑲-hop neighborhood
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Receptive field for 
1-layer GNN

Receptive field for 
2-layer GNN

Receptive field for 
3-layer GNN
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 Receptive field overlap for two nodes
▪ The shared neighbors quickly grows when we 

increase the number of hops (num of GNN layers)
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1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!



 We can explain over-smoothing via the notion 
of receptive field
▪ We knew the embedding of a node is determined 

by its receptive field
▪ If two nodes have highly-overlapped receptive fields, then 

their embeddings are highly similar

▪ Stack many GNN layers → nodes will have highly-
overlapped receptive fields → node embeddings 
will be highly similar → suffer from the over-
smoothing problem

 Next: how do we overcome over-smoothing problem?
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 What do we learn from the over-smoothing problem? 
 Lesson 1: Be cautious when adding GNN layers
▪ Unlike neural networks in other domains (CNN for image 

classification), adding more GNN layers do not always help
▪ Step 1: Analyze the necessary receptive field to solve your 

problem. E.g., by computing the diameter of the graph
▪ Step 2: Set number of GNN layers 𝐿 to be a bit more than the 

receptive field we like. Do not set 𝑳 to be unnecessarily 
large!

 Question: How to enhance the expressive power of a 
GNN, if the number of GNN layers is small?
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 How to make a shallow GNN more expressive?
 Solution 1: Increase the expressive power within 

each GNN layer
▪ In our previous examples, each transformation or 

aggregation function only include one linear layer
▪ We can make aggregation / transformation become a 

deep neural network!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP

4==* 4) "5 5J*\ Y <@ -./ < 0*' 7- ** ' J*



 How to make a shallow GNN more expressive?
 Solution 2: Add layers that do not pass messages
▪ A GNN does not necessarily only contain GNN layers
▪ E.g., we can add MLP layers (applied to each node) before and after 

GNN layers, as pre-process layers and post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning / transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!
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 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
▪ Observation from over-smoothing: Node embeddings in 

earlier GNN layers can sometimes better differentiate nodes
▪ Solution: We can increase the impact of earlier layers on the 

final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015
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 Why do skip connections work?
▪ Intuition: Skip connections create a mixture of models
▪ 𝑁 skip connections → 2𝑁 possible paths
▪ Each path could have up to 𝑁 modules
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Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

▪ We automatically get a mixture 
of shallow GNNs and deep GNNs
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 A standard GCN layer 

 A GCN layer with skip connection
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This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱
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 Other options: Directly 
skip to the last layer
▪ The final layer directly 

aggregates from the all the 
node embeddings in the 
previous layers
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Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
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Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)
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(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation
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Our assumption so far has been 
 Raw input graph = computational graph
Reasons for breaking this assumption
▪ Feature level: 
▪ The input graph lacks features → feature augmentation

▪ Structure level:
▪ The graph is too sparse → inefficient message passing
▪ The graph is too dense → message passing is too costly
▪ The graph is too large → cannot fit the computational 

graph into a GPU
▪ It’s just unlikely that the input graph happens to be 

the optimal computation graph for embeddings
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 Graph Feature manipulation
▪ The input graph lacks features → feature 

augmentation
 Graph Structure manipulation
▪ The graph is too sparse → Add virtual nodes / edges
▪ The graph is too dense → Sample neighbors when 

doing message passing
▪ The graph is too large → Sample subgraphs to 

compute embeddings 
▪ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
 (1) Input graph does not have node features
▪ This is common when we only have the adj. matrix

 Standard approaches:
 a) Assign constant values to nodes
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Why do we need feature augmentation?
 (1) Input graph does not have node features
▪ This is common when we only have the adj. matrix

 Standard approaches:
 b) Assign unique IDs to nodes
▪ These IDs are converted into one-hot vectors
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1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5
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 Feature augmentation: constant vs. one-hot
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Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. High dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)
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(Jiaxuan 2023)
Finished here.
Good lecture overall. The slides for GAT is 
slightly repetitive, we could shrink 1 slide on the 
content there.



Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Example: Cycle count feature
▪ Can GNN learn the length of a cycle that 𝑣1 resides in?
▪ Unfortunately, no
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4
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 𝒗𝟏 cannot differentiate which graph it resides in 
▪ Because all the nodes in the graph have degree of 2
▪ The computational graphs will be the same binary tree
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𝑣1 𝑣2

𝑣1 resides in a cycle 
with length 3

𝑣1 resides in a cycle 
with length 4

𝑣1

𝑣1 resides in a cycle with infinite length

… …

The computational 
graphs for node 𝒗𝟏
are always the same
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Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution: 
▪ We can use cycle count as augmented node features
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021
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Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Other commonly used augmented features:
▪ Clustering coefficient
▪ PageRank
▪ Centrality
▪ …

 Any feature we have introduced in 
Lecture 2 can be used!
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 Motivation: Augment sparse graphs
 (1) Add virtual edges
▪ Common approach: Connect 2-hop neighbors via 

virtual edges
▪ Intuition: Instead of using adj. matrix 𝐴 for GNN 

computation, use 𝐴 + 𝐴2
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C

D

E

Authors Papers

▪ Use cases: Bipartite graphs
▪ Author-to-papers (they authored)
▪ 2-hop virtual edges make an author-author 

collaboration graph
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 Motivation: Augment sparse graphs
 (2) Add virtual nodes
▪ The virtual node will connect to all the 

nodes in the graph
▪ Suppose in a sparse graph, two nodes have 

shortest path distance of 10
▪ After adding the virtual node, all the nodes 

will have a distance of 2 
▪ Node A – Virtual node – Node B

▪ Benefits: Greatly improves message 
passing in sparse graphs
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The virtual 
node
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 Previously:
▪ All the nodes are used for message passing

 New idea: (Randomly) sample a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017
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 For example, we can randomly choose 2 
neighbors to pass messages
▪ Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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 Next time when we compute the embeddings, 
we can sample different neighbors
▪ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71



 In expectation, we can get embeddings similar 
to the case where all the neighbors are used
▪ Benefits: Greatly reduce computational cost
▪ And in practice it works great!
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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 Recap: A general perspective for GNNs
▪ GNN Layer: 
▪ Transformation + Aggregation
▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity: 
▪ Deciding number of layers
▪ Skip connections

▪ Graph Manipulation:
▪ Feature augmentation
▪ Structure manipulation

 Next: GNN objectives, GNN in practice
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