Stanford CS224W:
Graph Neural Networks



ANNOUNCEMENTS

* Today (10/07): Colab 1 due, Colab 2 out
* Next Thursday (10/14): HW 1 due, HW 2 out

* Project proposals due on Tuesday 10/19
o If you are looking for project partners, check out / add
yourself to our pinned Ed post ("Project Partner Thread")
-- reach out to each other!
o We strongly encourage groups of 3, but groups of 1 or 2
are allowed

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu




Recap: Node Embeddings

B R ko ]
Intuition: Map nodes to d-dimensional

embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

How to learn mapping function f?
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Recap: Node Embeddings

Goal: similarity(u,v) ~ z,)z,

Need to define!
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Recap: Two Key Components

Encoder: Maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

Specifies how the
relationships in vector space map to the
relationships in the original network

similarity(u,v) = zlz, Decoder
Similarity of u and v in dot product between node

the original network embeddings
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Recap: “Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
. of embeddings

‘9 /

~
one column per node
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Recap: Shallow Encoders

DeepWalk , Node 2vec , LINE

Limitations of shallow embedding methods:

o(|V|) paraTjreters are needed: &7F4 61BN O EATE $28 VI
No sharing of parameters between nodes
Every node has its own uniqgue embedding

Inherently “transductive”: & X, & %20 T H /%"fx T2
Cannot generate embeddings for nodes that are not seen
during training

Do not incomr)borate node features: ;X AR “ﬁr—'iﬁfi#%
Nodes in many graphs have features that we can and

#| A
should leverage

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7



Today: Deep Graph Encoders

B R AN EigaR A

Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

10/7/21

multiple layers of
ENC(v) =  non-linear transformations
based on graph structure

Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.



Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &
& &
Activation Q Q
function &
/ >

A,

y
'y

Output: |Node embeddings|
Also, we can embed subgraphs,

and graphs
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Tasks on Networks

Tasks we will be able to solve:
Node classification

Predict a type of a given node
Link prediction

Predict whether two nodes are linked
Community detection

ldentify densely linked clusters of nodes
Network similarity

How similar are two (sub)networks
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Modern ML Toolbox
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Modern deep learning toolbox is designed
for simple sequences & grids




But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features
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Outline of Today’s Lecture

10/7/21

Basics of deep learning Eﬁ

Deep learning for graphs
Graph Convolutional Networks

GNNs subsume CNNs and
Transformers



Stanford CS224W:
Basics of Deep Learning



Machine Learning as Optimization

Ik # 5 0 4%AE
Supervised learning: we are given input x,

and the goal is to predict label y.
Vectors of real numbers &=
Sequences (natural language) A&7
Matrices (images) Mr#& A k

Graphs (potentially with node and edge features) A
We formulate the task as an optimization
problem.
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Machine Learning as Optimization

Formulate the task as an optimization problem:

mi }/l(y,f (x))\ ~

Objective function
0): a set of parameters we optimize

Could contain one or more scalars, vectors, matrices ...
E.g. ©® = {Z} in the shallow encoder (the embedding lookup)

L: loss function. Example: L2 loss

Ly, f) =y = fFCl

Other common loss functions:

L1 loss, huber loss, max margin (hinge loss), cross entropy ...
See https://pytorch.org/docs/stable/nn.html#loss-functions
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Loss Function Example

One common loss for classification: cross entropy (CE)
Label y is a categorical vector (one-hot encoding)

y is of class “3”

e.g. y = ““n““
f(x) = Softmax(g(x))

eg(x)i (x); denotes i-th
Recall from lecture 3: f(x); = 900

Z(_; eg(x)j coordinate of the vector
J=1 output of func. g(x)

where C is the number of classes.

ZIER o | 03 | 04 |02 ]oa \
CE(y, f(0) = =21 0ilog f(x);) - Llog ot D

y; and f(x); are the actual and predicted values of the i-th class. Lo X
Intuition: the lower the loss, the closer the prediction is to one-hot

Total loss over all training examples:
L= Z(x,y)ET CE(y;f(x))

T': training set containing all pairs of data and labels (x, y)
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Machine Learning as Optimization

o EARE A .
How to optimize the objective function?

Gradient vector: Direction and rate of fastest
Partial derivative

Increase e
Vol = ( oL oL/ )
@ —
00,’ 90,
®1' ®2 P Components Of @ https://en.wikipedia.org/wiki/Gradient
Recall dlreyc—t!gknal derivative
570 4%

of a multi-variable function (e.g. L) along a given
vector represents the instantaneous rate of
change of the function along the vector. (4t%)
Gradient is the directional derivative in the
direction of largest increase. #t&#cuin

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18



Gradient Descent

AT
Iterative algorithm: repeatedly update weights in
the (opposite) direction of gradients until

convergence O« 0-—nVeLl

Training: Optimize O iteratively
Iteration: 1 step of gradient descent

Learning rate (LR) n: =3%
Hyperparameter that controls the size of gradient step
Can vary over the course of training (LR scheduling)
gradient = 0 (s24)

In practice, we stop training if it no longer improves
performance on validation set (part of dataset we hold
out from training).
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Stochastic Gradient Descent (SGD)

Exact gradient requires computing Vo L(y, f (x)),
where x is the entire dataset! 5zx-:x  Fir AR FRR&L

This means summing gradient contributions over all the
points in the dataset

Modern datasets often contain billions of data points

Extremely expensive for every gradient descent step

At every step, pick a different B containing

a subset of the dataset, use it as input x
BIEA R 9 B N batch size N FEA 1T HARRE
10/7/21 Jure
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Minibatch SGD

Concepts: R EAK BN 8 R AR
Batch size: the number of data points in a minibatch
E.g. number of nodes for node classification task

Iteration: 1 step of SGD on a minibatch

Epoch: one full pass over the dataset (# iterations is

equal to ratio of dataset size and batch size)
i AR
T 11

But there is no guarantee on the rate of convergence

In practice often requires tuning of learning rate
Common optimizer that improves over SGD:

Adam, Adagrad, Adadelta, RMSprop ...
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Neural Network Function

min L(y, f(x))
In deep learning, function f can be very complex
Example: /.
To start simple, con5|der linear functlon @‘;o
/() = =W}

Then, if f returns a scaalar %hen afls a learnable vector
Vi, f = , , ) AREEEE
= G aw, e, B

But, if / returns a vector, then I/ is the weight matrix

" df1 df, - -
$ R LB
Vi f = 0 0 Jacobian
afl afz matrix off
0 aw--
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Intuition: Back Propagation

Goal: mgn L(y, f(x))

To minimize L, we need to evaluate the gradient:

which means we need to derive derivative of L.
Overview of Back-propagation: Z 4 & 2 &1m%

L is composed from some set of predefined building
block functions g(-)

For each such g we also have its derivative g’

Then we can automatically computeVg L by evaluating
appropriate funcs. g’ on the minibatch B.
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Back-propagation

f=9-h
f(xl)*lz WZ (Wlx)’ 0 = {Wl' WZ} In other words:
Recall chain rule® % > 76 = Wil

g(z) = W,z

d dg d , , ,
=05 or f00 = g (RGN (o)

. _ af . a(Wl.X) @l ®
Example: V., [ = s ox @}A’%{‘

. /:E&;k' /%WIJ dz
Back-propagation: Use of chain rule to - -7 -

propagate gradients of intermediate steps, and
finally obtain gradient of L w.r.t. 0.
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Back-propagation Example (1)

W,y ,
[0 = o) w00
L = Z(x,y)eB “(y' _f(x))“z

The loss L sums the L2 loss in a minibatch B.

hidden layer
REE

Intermediate representation of input x
Here we use h(x) = W;x to denote the hidden layer

f(x) = Wyh(x)
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Back-propagation Example (2)

10/7/21

Remember:

Forward propagation: 71 2.0 sirxas /o180

Compute loss starting from input g;):WZZ
1 W

x 2
x h g L 1 f(0)
Multiply W; Multiply W, Loss Xy /

—

Rt RARE 0 = {W,, W,)
Start from loss, compute the gradient
0L _az: af 0L _613 af JdW,

ow, af ow,’  aw, af ow, ow,

Compute backwards Compute backwards
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Non-linearity

Note thatin f(x) = Wo(Wx), WoW, is
another matrix (vector, if we do binary classification)

Hence f(x) is still linear w.r.t. x no matter how
many weight matrices we compose 45 A A RALT AR

. E(3Z tE B E LLéL
We introduce non-linearity:

Rectified linear unit (RelLU)
ReLU(x) = max(x, 0)

Sigmoid
S 1

1+e*

o(x) =

ylk

K

ylk

/

1/‘

0
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Multi-layer Perceptron (MLP)

Each layer of MLP combines linear transformation and
non-linearity:
xD = g(WxD 4+ ph

where W, is weight matrix that transforms hidden representation at
layer [ to layer [ + 1

bl is bias at layer [, and is added to the linear transformation of x 1& % s/
o is non-linearity function (e.g., sigmod) JE4% 14 (8% & 2L
Suppose x is 2-dimensional, with entries x; and x,

3-dimensional hidden
representation

1-dimensional
output

Every layer:
Linear transformation +
non-linearity
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10/7/21

Objective function:

min L(y, f (x))
f can be a simple linear layer, an MLP, or
other neural networks (e.g., a GNN later)
Sample a minibatch of input x
Forward propagation: Compute L given x
Back-propagation: Obtain gradient V,,, L using
a chain rule.

Use stochastic gradient descent (SGD) to
optimize for ® over many iterations.

ure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Outline of Today’s Lecture

v

10/7/21

Deep learning for graphs Eﬁ

Graph Convolutional Networks

GNNs subsume CNNs and
Transformers



Stanford CS224W:
Deep Learning for Graphs



Content

Local network neighborhoods:
Describe aggregation strategies
Define computation graphs

Stacking multiple layers:
Describe the model, parameters, training
How to fit the model?

Simple example for unsupervised and
supervised training
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Setup

10/7/21

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)

X € R™ IVl is a matrix of node features 2w 451z
v:anodein V;|N(v) the set of neighbors of v.
Node features: hv1itsk (aid $2.)

Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information
When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]
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A Naive Approach

NE 84 B AR AT 4E 1S A
Join adjacency matrix and features
Feed them into a deep neural net:

. hidden layer 1 hidden layer 2 hidden layer 3
inpu

t laye ~

A B C D E Feat G

( ) Q: I la
A o1 1 1 0 1 0 Q
(A) (B
B 1 0 0 1 1 0 o0 Q

® ¢ 10010 o0 1 ) G "

© ©) D 1 1 1 0 1 1 1 >
E
01 0 10 1 0 | ®;

Issues with this idea:
O(|V]) parameters  izw4
Not applicable to graphs of different sizes % ;swsl4%s

Sensitive to node ordering &2% zwszit’
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ldea: Convolutional Networks

CNN on an image:

Subsampling i Subsampling Fully connected

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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Real-World Graphs

But our graphs look like this:

a o
e J° | orthis A V)
v ® ¢ .o 7 o =
e o \ .' ®
® ® o ® o °

HES:0N

= There is no fixed notion of locality or sliding
window on the graph

" Graph is permutation invariant 244 Ta#ALi’
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Permutation Invariance

ARE B

Graph does not have a canonical order of the nodes!
We can have many different order plans.
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node features X, Adjacency matrix A4

Order plan1 ABCDEFTF

mm O N @ >

Node features X, Adjacency matrix 4,

Order plan 2 ~ G ABCDEF
- D
c GID 2
P @D
@D
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Permutation Invariance

Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 44

Order plan1 » GID ABCDEF
D

c D
D D

J N @ >

Order plan 1

O Order plan 2

O
m O M C
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Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?
Consider we learn a function f that maps a
graph G = (4, X) to a vector R? then

f(Al’Xl) — f(AZ’XZ) A is the adjacency matrix

X is the node feature matrix

Order plan1: A4, X4 Order plan 2: 4,, X,

For two order plans,
output of f should

be the same!
%L RS NRARE
HRANETFAXL
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Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?

Consider we learn a function f that maps a

graph G = (A, X) to a vector RY.  Xidine nods feature matn
Then, if f(4;,X;) = f(Aj,Xj) for any order

plan i and j, we formally say fisa  #*"4
permutation invariant function.

For a graph with m nodes, there
are m! different order plans.
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Permutation Equivariance

Similarly for node representation: We learn a
function f that maps nodes of G to a matrix R™*¢,

Order plani1: A1, X4 Order plan 2: A4,, X,

A A
B B
f(A1X1)_E f(AZXZ)_g
E E
F F

raphs, http://cs2 anford.edu




Permutation Equivariance

Similarly for node representation: We learn a
function f that maps nodes of G to a matrix R™*¢.

Order plani1: A1, X4 Order plan 2: A4,, X,

Representation vector
of the brown node A

f(A1»X1 ) =

Representation vector
of the brown node E

For two order plans, the vector of node
at the same position is the same!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Permutation Equivariance

Similarly for node representation: We learn a
function f that maps nodes of G to a matrix R™*¢.

Order plani1: A1, X4 Order plan 2: A4,, X,

A
B

Representation vector

f(Al,Xl ) _ of the brown node C f(AZIXZ) =

Representation vector
of the brown node D

|

For two order plans, the vector of node
at the same position is the same! F
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Permutation Equivariance

For node representation
Consider we learn a function f that maps a graph
G = (4, X) to a matrix R™*¢
graph has m nodes, each row is the embedding of a
node.
Similarly, if this property holds for any pair of
order plan i and j, we say f is a permutation
equivariant function.
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[Bronstein, ICLR 2021 keynote]

Graph Neural Network Overview

Graph neural networks consist of multiple
permutation equivariant / invariant functions.

) N 1
/ /Jf%/
/

[=
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

Switching the order of the
input leads to different
outputs!
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

A B C D E Feat

r N\ output layer
A o 1 1 1 O 1 0
B i 0 0 1 1 0 O J
cCl 10010 o0 1 "
D 11 1 0 1 1 1
E

L o 1 0 1 O 1 0 )

the naive MLP approach
fails for graphs
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Graph Neural Network Overview

Are any neural network architecture, e.g.,

?

passing and aggregating
Information from neighbors

YWY BTN
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Outline of Today’s Lecture

v
v

Graph Convolutional Networks ?

A A 40 A 4 1)

GNNs subsume CNNs and
Transformers
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[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph % &

|gr

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features
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ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

ARGET NODE ® A‘:‘I ..................... )

"

a

A .”“

. |
K A e .
A' e
A < > TETTPETYPTTTTTEITY ‘ V' ...............
3
Q.’
.0

°-n
INPUTGRAPH T T A
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ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks
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ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
FA B ARIIE AT it E i
Every node defines a computation
graph based on its neighborhood! /

INPUT GRAPH
o o i o o

0 o o ] ] ]
.%uﬁ % o %mmé. 0 .% ?. 8 oo

P o o0 ® o

‘ i “ %,h iﬂ& .%%y i ﬁ ‘y. i %"é ‘& %,‘ﬁ “

& o Lo = » % Nomep ) = % 4

aae®® %% (o0’ o0 ooo ®e¢ o® %o, e

AHE A9 48] (ash Rt

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Deep Model: Many Layers

e AL N1 R15

190 AL RE

Model can be of arbitrary depth:
Nodes have embeddings at each layer
Layer-0 embedding of node v is its input feature, x,,

Layer-k embedding gets information from nodes that
are k hops away

ALY AT X 0)=E 78 | aver Layer-}%
% ’L+ :@; PE] é}]/% Z}EL ayer_ 7 A A
TARGET NODE Eﬂﬁ%ﬁ#éilﬂl éjﬂké‘]/éii ‘A“ ................... ‘ XC
£ Layer-2 A‘ ;(A
»" : ,,,,,,,,,,, B
/ A <« : ............... ‘4‘-: ........ ‘ X E

N
INPUTGRAPH o e A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57



Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE | ' 4‘: ...................... ‘
l What is in the box?.~

A

A ........ B
/ Dt D g ol

' N
INPUTGRAPH T T A
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Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

Order Invariant
Permutation Invariant

(1) average messages

. e a
TARGET NODE from nelghbors 51y x| ‘A“ ...................... ‘
e e 18x|
l Siax| A -

A
R ."‘ o
yy AT .
‘ : ..... | 18 x l
a D PP .
AN x ..'.".
03 .
‘e

o
INPUT GRAPH 512 |‘. ......... A

(2) apply neural network
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The Math: Deep Encoder

Basic approach: Average neighbor messages

and apply a neural network
5 AFIE
L-RBPAVARNEE

embedding of

h) = x
v v / v at layer k

ARETEVHBRAPE h(k)
(k+1) . (k)
h$ =g (W ) NGy Beeh vk e 0, B~ 1)
UeN) oat
(K) ﬁri&?é’ t-gFhame  Total number
Z, = h; Average of neighbor’s of layers

previous layer embeddings

Non-linearity YT BNEE oo (Fi) 1R HFENRAAK
RelU Notice summation is a permutation
( ) éﬁf%ﬁl& ) invariant pooling/aggregation.
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Equivariant Property

Message passing and neighbor aggregation in
graph convolution networks is permutation

equivariant.
o Hi-o-{

Permutation invariant
aggregation

Node feature X, Adjacency matrix 4
A B CDEF

Target Node

MmN o >
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Equivariant Property

Message passing and neighbor aggregation in
graph convolution networks is permutation

equivariant.
o Hi-e-{

Permutation invariant
aggregation

Node feature X, Adjacency matrix 4,
A B CDEF

m m N 0 >

o
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Training the Model

How do we train the GCN to
generate embeddings?

o
iis

ZAA<-

Need to define a loss function on the embeddings.
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Model Parameters

Trainable weight matrices

h(o) = Xy (i.e., What We learn) % k/%?%%%ﬂé;# i
7 B | E TR 61ARE S
h, " = o[l */Z h(k)\?E hY%)), vk € {0..K — 1
(Y k |N(U)| k1l ) J
x) ~— uENw) —
— h E‘Ff]ﬁ’f%ﬁté‘k} _
v \ %%i‘kfé_é{ F(X) w

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

h¥: the hidden representation of node v at layer k

W, : weight matrix for neighborhood aggregation

B}, : weight matrix for transforming hidden vector of
self
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Matrix Formulation (1)

Many aggregations can be performed

efficiently by (sparse) matrix operations

Let () = [h(k) hl(‘}',‘l)]T Matrix of hidden embeddings H®*~)

Then: ZuENv hik) = Av’:H(k)
Let D be diagonal matrix where
Dv,v = Deg(v) = [N(v)|
The inverse of D: D1 is also diagonal:
D, =1/IN(w)| p k=D
Therefore,

h,gk_l)
IN(v)]

UEN (V)
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Matrix Formulation (2)

Re-writing update function in matrix form:

HOD = (AHOW] + HOB]) :gj)i@
where A=D"1A

Red: neighborhood aggregation
Blue: self transformation

In practice, this implies that efficient sparse
matrix multiplication can be used (4 is sparse)

Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex
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How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15): faz&@iz ik

min L(y, f ()

y: node label 7 &% AlAT:L
L could be L2 if y is real number, or cross entropy

if y is categorical
Unsupervised setting:

No node label available

Use the graph structure as the supervision! &%

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67



Unsupervised Training

“Similar” nodes have similar embeddings
L= ) CE(yu DEC(z2,))

ZurZy

Where y,, , = 1 when node u and v are similar
CE is the cross entropy (Slide 16)

DEC is the decoder such as inner product (Lecture 4)
Node similarity can be anything from
Lecture 3, e.g., a loss based on:
Random walks (node2vec, DeepWalk, struc2vec)
Matrix factorization
Node proximity in the graph
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or toxic
Safe or toxic

drug?
drug?
|
% o
v 2%
Yu®
2 ® E.g., adrug-drug ##-mansrsa

interaction network ##&%%
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss (Slide 16)

£=) Wflog(o@l) + (1 ~mPlog(1 - oz}

veV

Encoder output: / Classification
' weights

node embedding
F IR

Node class w&Ac

il
o ! label
Safe or toxic drug? : : .“

£

P
0 O .
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Model Design: Overview

(1) Define a neighborhood
aggregation function %4s4rsiz a.s15%

ZAAd-

(2) Define a loss function on the
embeddings {r% &4
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Model Design: Overview

(3) Train on a set of nodes, i.e.,

a batch of compute graphs
M1n1 batch iJlléﬁ\

INPUT GRAPH
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Model Design: Overview

(4) Generate embeddings
/ for nodes as needed

Even for nodes we never

trained on!
VRO R 1

INPUT GRAPH Inductive Lear inj
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Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

A oe0 Wi Bx o o
/ ‘ ﬁ “shared parameters ‘ i

INPUT GRAPH Compute graph for node A Compute graph for node B
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Inductive Capability: New Graphs

Inductive Llearning JETL N I o1\ T & H73hH

- O\ /
o <4

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

4R %0,
E.g., train on protein interaction graph from model organism A and generate

embeddings on newly collected data about organism B
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Inductive Capability: New Nodes

Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”uxnsn

A Rzh
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Outline of Today’s Lecture

GNNs subsume CNNs and

Transformers E}
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Architecture Comparison

F 26
How does GNNs compare to priominent

architectures such as Convolutional Neural
Nets, and Transformers?
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Convolutional Neural Network

Convolutional neural network (CNN) layer with
3x3 filter:

CNN

weights Output

Image

CNN formulation: hgﬂ) = a(ZuEN(v)U{v}Wﬁhﬁ)), vie{0,..,L—1}

N (v) represents the 8 neighbor pixels of v.
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GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter:

O

Image Graph

D
* GNN formulation (previous slide): h( = o (W) Zuenw) “:( Y + B h(l)),VI €{0,..,L—1}
* CNN formulation: h(l+1) 0 (Xuenwyvwy Wi h(l)),‘v’l €{0,..,L—1}
if we rewrite: h(l+1) 0(QueNw) W“h(l) + Blh,(]l)),‘v’l €{0,..,L—1}
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GNN vs. CNN

Convolutional neural network (CNN) layer with
3x3 filter:

Image Graph

B®

GNN formulation: K{*Y = (W, SueNe) ey T B,hM),vi € {0,..,L — 13}

CNN formulation: h§ ™ = 0/(Zenwy WhY + Bihi), Vi € {0, ..., L — 1}

Key difference: We can learn different W* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (3, 1)}
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GNN vs. CNN

Convolutional neural network (CNN) layer with

3x3 filter: @ @ @

RSN

B) % 6147 35k A= B 2 60 11R T

147269

Key difference: We can learn different W* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (3, 1)}
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GNN vs. CNN

Convolutional neural network (CNN) layer with

3x3 filter: @ @ @

RSN

Key difference: We can learn different W* for different “neighbor” u for pixel v on
the image. The reason is we can pick an order for the g neighbors using relative
position to the center pixel: {(-1,-1). (-1,0), (-1, 1), ..., (3, 1)}
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[Attention is all you need. Vaswani et al., NeurIPS 2017]

Transformer

Transformer is one of the

most popular

architectures that — PR _)
achieves great ”’TJT”‘T
performance in many [{ f( f(
sequence modeling tasks. ° bl B

-
llllllll

Key component: self-attention t) 1€%3

Every token/word attends to all the other tokens/words via
matrix calculation.

12/6/18
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A nice blog plot for this:

GNN vs. Transformer

C‘mPh Attention NetworR (GAT)

Since each word attends to all the other @\
words, the computation graph of a AL A AE
transformer layer is identical to that of a GNN

on the fully-connected “word"” graph. am @ @ student

d Stanford

Text (Complete) Graph
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Summary

In this lecture, we introduced

Basics of neural networks
Loss, Optimization, Gradient, SGD, non-linearity, MLP

|dea for Deep Learning for Graphs
Multiple layers of embedding transformation
it 4 B { At every layer, use the embedding at previous layer as
the input
Aggregation of neighbors and self-embeddings
Graph Convolutional Network & #2482 %
Mean aggregation; can be expressed in matrix form

GNN is a general architecture
CNN and Transformer can be viewed as a special GNN
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