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ANNOUNCEMENTS

• Homework 1 due on Thursday (2/2)
• Based on course feedback, we will hold in-person 

OHs every week on Wednesday 9-11 AM PT. 
Location will be updated on the OH calendar.
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
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Prediction 
head Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

Dataset split

Implementation resources:
PyG provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design



How powerful are GNNs?
 Many GNN models have been proposed (e.g., 

GCN, GAT, GraphSAGE, design space).

 What is the expressive power (ability to 
distinguish different graph structures) of these 
GNN models?

 How to design a maximally expressive GNN 
model?
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(2) Aggregation

(1) Message

 We focus on message passing GNNs:
▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors
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𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙



 Many GNN models have been proposed:
▪ GCN,  GraphSAGE, GAT, Design Space etc.
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Different GNN models use different 
neural networks in the box

?

?

?

?



 GCN (mean-pool)
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Element-wise mean pooling +
Linear + ReLU non-linearity

?

?

?

?

[Kipf and Welling ICLR 2017]
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 GraphSAGE (max-pool)
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MLP + element-wise max-pooling

?

?

?

?

[Hamilton et al. NeurIPS 2017]
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 We use node same/different colors to represent 
nodes with same/different features.
▪ For example, the graph below assumes all the nodes 

share the same feature.

 Key question: How well can a GNN distinguish 
different graph structures?
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 We specifically consider local neighborhood 
structures around each node in a graph.
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▪ Example: Nodes 1 and 5 
have different 
neighborhood structures 
because they have 
different node degrees.
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 We specifically consider local neighborhood 
structures around each node in a graph.

1 2

3

45

▪ Example: Nodes 1 and 4
both have the same node 
degree of 2. However, they 
still have different
neighborhood structures 
because their neighbors 
have different node degrees.

Node 1 has neighbors of degrees 2 and 3.
Node 4 has neighbors of degrees 1 and 3.
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 We specifically consider local neighborhood 
structures around each node in a graph.
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▪ Example: Nodes 1 and 2 
have the same
neighborhood structure 
because they are 
symmetric within the 
graph.

Node 1 has neighbors of degrees 2 and 3.
Node 2 has neighbors of degrees 2 and 3.
And even if we go a step deeper to 2nd hop neighbors, both nodes
have the same degrees (Node 4 of degree 2)
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 Key question: Can GNN node embeddings 
distinguish different node’s local 
neighborhood structures?
▪ If so, when? If not, when will a GNN fail?

 Next: We need to understand how a GNN 
captures local neighborhood structures.
▪ Key concept: Computational graph
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 In each layer, a GNN aggregates neighboring node 
embeddings.

 A GNN generates node embeddings through a 
computational graph defined by the neighborhood.
▪ Ex: Node 1’s computational graph (2-layer GNN)
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 Ex: Nodes 1 and 2’s computational graphs.
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 Ex: Nodes 1 and 2’s computational graphs.
 But GNN only sees node features (not IDs):
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 A GNN will generate the same embedding for 
nodes 1 and 2 because:
▪ Computational graphs are the same.
▪ Node features (colors) are identical.
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Note: GNN does not
care about node ids, it
just aggregates features
vectors of different nodes.

GNN won’t be able to distinguish nodes 1 and 2



 In general, different local neighborhoods 
define different computational graphs
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 Computational graphs are identical to rooted 
subtree structures around each node.
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 GNN‘s node embeddings capture rooted 
subtree structures.

 Most expressive GNN maps different rooted 
subtrees into different node embeddings 
(represented by different colors).
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 Function 𝑓:𝑋 → Y is injective if it maps 
different elements into different outputs. 

 Intuition: 𝑓 retains all the information about 
input.
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 Most expressive GNN should map subtrees to 
the node embeddings injectively.
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 Key observation: Subtrees of the same depth 
can be recursively characterized from the leaf 
nodes to the root nodes.
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 If each step of GNN’s aggregation can fully 
retain the neighboring information, the 
generated node embeddings can distinguish 
different rooted subtrees.
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 In other words, most expressive GNN would 
use an injective neighbor aggregation
function at each step.
▪ Maps different neighbors to different embeddings.
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 Summary so far
▪ To generate a node embedding, GNNs use a 

computational graph corresponding to a subtree 
rooted around each node.

▪ GNN can fully distinguish different subtree 
structures if every step of its neighbor 
aggregation is injective.
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 Key observation: Expressive power of GNNs 
can be characterized by that of neighbor 
aggregation functions they use.
▪ A more expressive aggregation function leads to a 

more expressive a GNN.
▪ Injective aggregation function leads to the most 

expressive GNN.
 Next:
▪ Theoretically analyze expressive power of 

aggregation functions.
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 Observation: Neighbor aggregation can be 
abstracted as a function over a multi-set (a 
set with repeating elements). 
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 Next: We analyze aggregation functions of 
two popular GNN models 
▪ GCN (mean-pool) [Kipf & Welling, ICLR 2017] 

▪ Uses element-wise mean pooling over neighboring node 
features

Mean( 𝑥𝑢 𝑢∈𝑁(𝑣))
▪ GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Uses element-wise max pooling over neighboring node 
features

Max( 𝑥𝑢 𝑢∈𝑁 𝑣 )
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 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Take element-wise mean, followed by linear 
function and ReLU activation, i.e., max(0, 𝑥).

▪ Theorem [Xu et al. ICLR 2019] 

▪ GCN’s aggregation function cannot distinguish different 
multi-sets with the same color proportion. 

 Why?
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Failure case



 For simplicity, we assume node features 
(colors) are represented by one-hot encoding.
▪ Example: If there are two distinct colors:

▪ This assumption is sufficient to illustrate how GCN 
fails.
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 GCN (mean-pool) [Kipf & Welling ICLR 2017]

▪ Failure case illustration
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Linear + ReLU Linear + ReLU

Same outputs!

Element-wise-
mean-pool



 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Apply an MLP, then take element-wise max.
▪ Theorem [Xu et al. ICLR 2019] 

▪ GraphSAGE’s aggregation function cannot distinguish 
different multi-sets with the same set of distinct colors. 

 Why?
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Failure case



 GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]

▪ Failure case illustration

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

MLP

For simplicity, 
assume the one-
hot encoding 
after MLP.

Element-wise-
max-pool

The same outputs!



 We analyzed the expressive power of GNNs.
 Main takeaways: 
▪ Expressive power of GNNs can be characterized by 

that of the neighbor aggregation function.
▪ Neighbor aggregation is a function over multi-sets 

(sets with repeating elements) 
▪ GCN and GraphSAGE’s aggregation functions fail to 

distinguish some basic multi-sets; hence not injective.
▪ Therefore, GCN and GraphSAGE are not maximally 

powerful GNNs.
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 Our goal: Design maximally powerful GNNs 
in the class of message-passing GNNs.

 This can be achieved by designing injective
neighbor aggregation function over multi-
sets.

 Here, we design a neural network that can 
model injective multiset function.
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Theorem [Xu et al. ICLR 2019]

Any injective multi-set function can be expressed 
as:
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𝑆 : multi-set

Some non-
linear function

Some non-
linear function

𝑓 𝑓 𝑓+ +

Sum over multi-set



Proof Intuition: [Xu et al. ICLR 2019]

𝑓 produces one-hot encodings of colors. Summation of 
the one-hot encodings retains all the information about 
the input multi-set.

Example:
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 How to model 𝜱 and 𝒇 in 𝜱 σ𝒙∈𝑺 𝒇(𝒙) ?
 We use a Multi-Layer Perceptron (MLP).
 Theorem: Universal Approximation Theorem

[Hornik et al., 1989]

▪ 1-hidden-layer MLP with sufficiently-large hidden 
dimensionality and appropriate non-linearity 𝜎(⋅)
(including ReLU and sigmoid) can approximate any 
continuous function to an arbitrary accuracy.
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 We have arrived at a neural network that can 
model any injective multiset function.

▪ In practice, MLP hidden dimensionality of 100 to 
500 is sufficient.
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 Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]

▪ Apply an MLP, element-wise sum, followed by 
another MLP.

 Theorem [Xu et al. ICLR 2019] 

▪ GIN‘s neighbor aggregation function is injective.
 No failure cases!
 GIN is THE most expressive GNN in the class of 

message-passing GNNs we have introduced!
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 So far: We have described the neighbor 
aggregation part of GIN.

 We now describe the full model of GIN by 
relating it to WL graph kernel (traditional way 
of obtaining graph-level features).
▪ We will see how GIN is a “neural network” version 

of the WL graph kernel.
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Recall: Color refinement algorithm in WL kernel.
 Given: A graph 𝐺 with a set of nodes 𝑉.
▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.
▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood
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Example of color refinement given two graphs
▪ Assign initial colors

▪ Aggregate neighboring colors
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Example of color refinement given two graphs
▪ Aggregated colors:

▪ Injectively HASH the aggregated colors
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Example of color refinement given two graphs
 Process continues until a stable coloring is 

reached
 Two graphs are considered isomorphic if they 

have the same set of colors.
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 GIN uses a neural network to model the 
injective HASH function.

 Specifically, we will model the injective 
function over the tuple:

(𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢 𝑢∈𝑁 𝑣 )
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𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

Root node 
features

Neighboring 
node colors



Theorem (Xu et al. ICLR 2019)

Any injective function over the tuple

can be modeled as

where 𝜖 is a learnable scalar.
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𝑢∈𝑁 𝑣

)



 If input feature 𝑐 0 (𝑣) is represented as one-
hot, direct summation is injective.

 We only need Φ to ensure the injectivity.
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 GIN’s node embedding updates
 Given: A graph 𝐺 with a set of nodes 𝑉.
▪ Assign an initial vector 𝑐 0 𝑣 to each node 𝑣.
▪ Iteratively update node vectors by

𝑐 𝑘+1 𝑣 = GINConv 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where GINConv maps different inputs to different embeddings.

▪ After 𝐾 steps of GIN iterations, 𝑐 𝐾 𝑣 summarizes 
the structure of 𝐾-hop neighborhood.
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 GIN can be understood as differentiable neural 
version of the WL graph Kernel:

 Advantages of GIN over the WL graph kernel are:
▪ Node embeddings are low-dimensional; hence, they can 

capture the fine-grained similarity of different nodes.
▪ Parameters of the update function can be learned for the 

downstream tasks.
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 Because of the relation between GIN and the 
WL graph kernel, their expressive is exactly the 
same.
▪ If two graphs can be distinguished by GIN, they can be 

also distinguished by the WL kernel, and vice versa.
 How powerful is this?
▪ WL kernel has been both theoretically and 

empirically shown to distinguish most of the real-
world graphs [Cai et al. 1992].

▪ Hence, GIN is also powerful enough to distinguish 
most of the real graphs!
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Failure cases for mean and max pooling:

Ranking by discriminative power:

Jure Leskovec, Stanford University 55
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Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over amultiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset agiven
aggregator isable to capture: sum captures thefull multiset, mean captures theproportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a1-layer perceptron σ ◦ W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by anon-linear activation function such asaReLU.
Such 1-layer mappings areexamples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.
Lemma 7. There exist finite multisets X 1 6= X 2 so that for any linear mapping W,P

x2 X 1
ReLU (Wx) =

P
x2 X 2

ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlikemodels using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X ) =
P

x2 X f (x) with mean or max-pooling as in GCN
and GraphSAGE?Mean and max-pooling aggregatorsarestill well-defined multiset functionsbecause
they arepermutation invariant. But, they arenot injective. Figure 2 ranks the three aggregators by
their representational power, and Figure3 illustratespairsof structures that themean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f (a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f (a) remains
f (a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes thestructures because 2 · f (a) and 3 · f (a) givedifferent values. The sameargument
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 Can the expressive power of GNNs be improved?
▪ There are basic graph structures that existing GNN 

framework cannot distinguish, such as difference in cycles.

▪ GNNs’ expressive power can be improved to resolve 
the above problem. [You et al. AAAI 2021, Li et al. NeurIPS 2020]

▪ Stay tuned for Lecture 15: Advanced Topics in GNNs
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 We design a neural network that can model 
injective multi-set function.

 We use the neural network for neighbor 
aggregation function and arrive at GIN---the 
most expressive GNN model.

 The key is to use element-wise sum pooling, 
instead of mean-/max-pooling.

 GIN is closely related to the WL graph kernel.
 Both GIN and WL graph kernel can distinguish 

most of the real graphs!
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 Data preprocessing is important: 
▪ Node attributes can vary a lot! Use normalization
▪ E.g. probability ranges (0,1), but some inputs could have much 

larger range, say (−1000, 1000)
 Optimizer: ADAM is relatively robust to learning rate
 Activation function
▪ ReLU activation function often works well
▪ Other good alternatives: LeakyReLU, PReLU
▪ No activation function at your output layer 
▪ Include bias term in every layer 

 Embedding dimensions:
▪ 32, 64 and 128 are often good starting points
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 Debug issues: Loss/accuracy not converging 
during training
▪ Check pipeline (e.g. in PyTorch we need zero_grad)
▪ Adjust hyperparameters such as learning rate
▪ Pay attention to weight parameter initialization
▪ Scrutinize loss function!

 Important for model development:
▪ Overfit on (part of) training data: 
▪ With a small training dataset, loss should be essentially 

close to 0, with an expressive neural network

▪ Monitor the training & validation loss curve
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Auto-differentiation frameworks

GraphGym:
Easy and flexible end-to-end GNN pipeline
based on PyTorch Geometric (PyG)

GNN frameworks:
Implements a variety 
of GNN architectures

DGL GraphNets



Tutorials and overviews:
▪ Relational inductive biases and graph networks (Battaglia et al., 2018)
▪ Representation learning on graphs: Methods and applications (Hamilton et al., 2017)

Attention-based neighborhood aggregation:
▪ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)

Embedding entire graphs:
▪ Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
▪ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling 

(Ying et al., 2018,  Zhang et al., 2018)
▪ Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
▪ How powerful are graph neural networks(Xu et al., 2017)

Embedding nodes:
▪ Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
▪ Position-aware GNN (You et al. 2019)

Spectral approaches to graph neural networks:
▪ Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
▪ Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)

Other GNN techniques:
▪ Pre-training Graph Neural Networks (Hu et al., 2019)
▪ GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
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