Stanford CS224W:
GNN Augmentation and
Training




Course project

Goal: create long-lasting resources for your
technical profiles + broader graph ML
community
Three types of projects

1) Real-world applications of GNNs

2) Tutorial on PyG functionality

3) Implementation of cutting-edge research
We will publish your blog posts on our
course’s Medium page!
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1) Real-world applications of GNNs

Goal: identify a specific use case and
demonstrate how GNNs and PyG can be used
to solve this problem

Output: blog post, Google colab

Example use cases

Fraud detection
Predicting drug interactions

Friend recommendation
Check out the featured posts from our course
last year as examples of this type of project
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2) Tutorial on PyG functionality

Goal: develop a tutorial that explains how to
use existing PyG functionality
Output: blog post, Google colab
Example topics for tutorials
PyG’s explainability module

Methods for graph sampling (e.g., negative
sampling, sampling on heterogeneous graphs)

Tutorial on GraphGym, a platform for designing
and evaluating GNNs

Check out example tutorials from PyG
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3) Implementation of research

Goal: implement interesting methods from a
recent research paperin graph ML

Output: PR to PyG contrib, short blog post
Project details

Implementation should include comprehensive
testing and documentation on new functionality

Try to build on existing PyG and PyTorch code
wherever possible

Note: this project is more manageable if you are
already comfortable with PyTorch and deep

learning. We also highly recommend group of 3.
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Project logistics

Project is worth 20% of your course grade
Project proposal (2 pages), due February 7
Final reports, due March 21
We recommend groups of 3, but groups of 2
are also allowed
Full project description will be released
tonight! We will provide much more detail on
each project type, examples, pointers to
datasets, tips for writing blog posts and
Google Colabs, etc.
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Stanford CS224W:
GNN Augmentation and
Training




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

Recap: A General GNN Framework
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(4) Graph augmentation
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Recap: A Single GNN Layer

Putting things together:

(1) Message: each node computes a message
mg) = MSGW (hg_l)) ,u € {N(v) Uv}
(2) Aggregation: aggregate messages from neighbors

hY) = A6 ({m{,u e N(v)}, mY)

Adds expressiveness
Often written as o(+): ReLU(-), Sigmoid(-), ...
Can be added to message or aggregation

(2) Aggregation

QY um ¢® (1) Message
o O O
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He etal. , CVPR 2015

Recap: GNN Layer Connectivity

What if my problem still requires many GNN layers?
Lesson 2: Add skip connections in GNNs

Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

i : Duplicate

: MLP L - :

pr';::?ass : . into two

layers | " branches

;::::'.:'.'.'.:::: ::::::'.'.'.:::'.:::::::::::‘.::::::::; X S Idea Of Skip connections:
{ | GNNL : E : .

| GNN Layer | weight layer Before adding shortcuts:
§ i SKki i relu

connelc?tiong F(X) weigh‘t' aver X F(X)

| identity  After adding shortcuts:
i::::::::::::' '.:::::::;:‘::::::::::::::::::::: f(X) + X F(X) + X

Post- ; eLu Sum two

process ! "

branches
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Recap: Graph Manipulation

Graph Feature manipulation

The input graph lacks features = feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges

The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

Will cover later in lecture: Scaling up GNNs
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J.You, J. Gomes-Selman, R.Ying, J. Leskovec. , AAAI 2021

Feature Augmentation on Graphs

(2) Certain structures are hard to learn by GNN
Solution:

We can use cycle count as augmented node features

We start Augmented node feature for v, Augmented node feature for v4
e star
fromeyde [0, 0,0, 1, 0, 0] [0,0,0,0,1, 0]
with length O
t t
V1 resides in a cycle with length 3 V4 residesin a cycle with length 4

(%
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Stanford CS224W:
Prediction with GNNs




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (4)

TARGET NODE

l

A

/

INPUT GRAPH

Next: How do we train a GNN? % - &

‘H

%Q \::3¢
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GNN Training Pipeline

So far what we have covered

PPPPPPPPPP

Graph
Neural
Network

Node

embeddings

[

I]/I]I]

Evaluation
metrics

AN

ls— Wl

B i 4% ) 4% 34) 2 FAR T 8. 81 Embedding
Output of a GNN: set of node embeddings

{hf,L), Vv € G}

2/16/2023

Jure
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GNN Training Pipeline (1)

Evaluation
metrics

Input Graph Node

Graph Neural embeddings g ................................ g A

Network
] : | Prediction | i| ..
- [ . > = Predictions Labels

; - Ir U[i] head [:

PPPPPPPPPP o0 Loss
function

(1) Different prediction heads:
- Node-level tasks

- Edge-level tasks

- Graph-level tasks
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GNN Prediction Heads

Idea: Different task levels require different
prediction heads

Node-level
prediction

Graph-level E
prediction :

Edge-level
prediction
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Prediction Heads: Node-level

Node-level prediction: We can directly make
prediction using node embeddings!
After GNN computation, we have d-dim node

embeddings: {h'*) € R? Vv € G}
Suppose we want to make k-way prediction
Classification: classify among k categories 2% k1 45l s

ﬁ “I;egressmn regress on k targets ©1)3 - kTG
i‘xr‘ E:

$, = Headpoge (W) = WDR® sz

MR

W) € Rk*4 . \We map node embeddings from =

hf,L) € R to y,, € R” so that we can compute the
loss
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Prediction Heads: Edge-level

Edge-level prediction: Make prediction using

pairs of node embeddings

Suppose we want to make k-way prediction

~ L L
Vuy = Headedge(hﬁ),hi )

What are the options for Headqg, (hg), hl(,L))?
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Prediction Heads: Edge-level

Options for Headqg, (hELL), hf,L)):
(1) Concatenation + Linear

We have seen this in graph attention

Concatenate Linear o i{l’/{ CAT “l" éﬂ thﬁi)@
I |:| 2 o4 Embedding y uU

I-1) 4. (I-1)
h, hy

Vuy = Linear(Concat(th), hf,L)))

Here Linear(-) will ra"ﬁ\agp 2d-dimensional
embeddings (since we concatenated embeddings)
to k-dim embeddings (k-way prediction)
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Prediction Heads: Edge-level

Options for Headqg, (hff), h,(,L)):
(2) Dot product
Yuv = (h(L))Th(L)

e
This approach only applies to 1-way predlctlon (e.g.,
link prediction: predict the existence of an edge)

- B8

Applying to k-way prediction: k7% Link Prediction

Similar to multi-head attention: W ... W) trainable
,\(1) _ h(L) TW(1)h(L) FARH R TR A
, I%'s% ( | 2(; 25bx2s) vzsb x| %/Fi%li‘}/} ﬂ#&i

T s REM A fu AT AR R B0
A(k) (h(L))Tw(k) h(L)

Vo = Concat(d.), ..., ")) € R¥
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Prediction Heads: Graph-level

Graph-level prediction: Make prediction using
all the node embeddings in our graph
Suppose we want to make k-way prediction

Y. = Headgraph({h(L) € R, Vv € G))

LA 8. B¥ fhA D281 Embeou

Headg,pn (+) is similar to =y

QY mm o® (1) Message

AGG()maGNNIayerI | JPa
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K.Xu*, W. Hu*, J. Leskovec, S. Jegelka. , ICLR 2019

Prediction Heads: Graph-level

/o By AL, - BN Embedding TA - AFE
Options for Headgraph({hff) € R%, Vv € G))
(1) Global mean pooling
Yo = Mean({hff) € R4, Vv € G})
(2) Global max pooling
y: = Max({h'®) € R4, vv € G})
(3) Global sum pooling
y: = Sum({h'” € R, vv € G})
These options work great for small graphs
Can we do better for large graphs?
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Issue of Global Pooling

Issue: Global pooling over a (large) graph will lose
information
Toy example: we use 1-dim node embeddings
Node embeddings for G1: {—1,—2,0,1, 2}
Node embeddings for G,: {—10,—20,0, 10, 20}

- Their structures should be different
If we do global sum pooling:

Predictionfor G;: ¥, = Sum({—1,—2,0,1,2}) =0
Predictionfor G,: ¥ = Sum({—10,—20,0,10,20}) =0
We cannot differentiate G; and G,! e *&AE 2574
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Hierarchical Global Pooling

A solution: Let’s aggregate all the node
embeddings hierarchically » £

Toy example: We will aggregate via ReLU(Sum(-))

We first
Then we aggregate again to make the final prediction

(1 node embeddings: {—1,—-2,0,1, 2}
Round 1: ,

Round 2: j; = ReLU(Sum({y,,y,})) = 3
G, node embeddings: {—10,—20,0, 10, 20}
Round 1: ,

Now we can
differentiate

Round 2: §; = ReLU(Sum({y,,v,})) = 30 G, and G, !
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Ying et al. , NeurlPS 2018

Hierarchical Pooling In Practice

DiffPool idea: itzt7z i

Hierarchically pool node embeddings

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

AR B:R N BA

Leverage 2 independent GNNs at each level

Compute node embeddings
Compute the cluster that a node belongs to itz Ca%%)

GNNs A and B at each level can be executed in parallel
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Hierarchical Pooling In Practice

DiffPool idea:

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

For each Pooling layer

Use clustering assignments from to aggregate node
embeddings generated by

Create a single new node for each cluster, maintaining
edges between clusters to generated a new pooled network

Jointly train and
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Stanford CS224W:
Training Graph Neural Networks




GNN Training Pipeline (2)

(2) Where does ground-truth come from?
- Supervised labels

- Unsupervised signals Evaluation
metrics

Input Graph Node
Graph Neural embeddings
Network D

Prediction

- A > D D > head > Predictions Labels
Sl =% |] |] |]

PPPPPPPPPP eoo Loss
function

=
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Supervised vs Unsupervised

Labels come from external sources
E.g., predict drug likeness of a molecular graph

Signals come from graphs themselves

E.g., link prediction: predict if two nodes are connected
Sometimes the differences are blurry

We still have “supervision” in unsupervised learning

E.g.,
An alternative name for “ " Is “self-
supervised” bk

v —t
il e R Ak N
A P W V] ey
B R R S AR T L,
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Supervised Labels on Graphs

Supervised labels come from the specific use
cases. For example:

5 AR

Node labels y,;:
Comiﬁiﬁ%

Edge labels y,,,,:

Graph labels y:

Advice: Reduce your task to node / edge / graph
labels, since they are easy to work with

E.g., we knew some nodes form a cluster. We can treat
the cluster that a node belongs to as a DiffPool
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Unsupervised Signals on Graphs

The problem: sometimes

The solution: “self-supervised learning”, we can
find supervision signals within the graph.
For example, we can let GNN predict the following:

Node-level y,,. Node statistics: such as clustering
coefficient, PageRank, ...

Edge-level y.,.,.

Graph-level y..
15)#%
These tasks do not require any external labels!
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GNN Training Pipeline (3)

Evaluation
metrics
Input Graph Node
Graph Neural embeddings /\
Network
W |] Prediction | .
- . > . * Predictions Labels
A n [| [| head
./ *qe ./
AN
"""""""""" oo Loss
function

(3) How do we compute the flnal loss?
- Classification loss
- Regression loss
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Settings for GNN Training

2/16/2023

We have N data points
Each data point can be a node/edge/graph

Node-level: prediction yff), label yg)

We will use prediction ¥, label y¥ to refer
predictions at all levels
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Classification or Regression

Classification: labels y") with discrete value

E.g., Node classification: which category does a
node belong to

Regression: labels y(¥ with continuous value

E.g., predict the drug likeness of a molecular graph
GNNs can be applied to both settings
Differences: loss function & evaluation
metrics
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Classification Loss

As discussed in lecture 6, cross entropy (CE) is
a very common loss function in classification
for i-th data point:

N K ; _). i-th data point
CEky(l)"y(l)] - 2 =1 yﬁl) lOg( ](l)) j-th class
Label Prediction J=
where: t T\.

Y TR

y(® € RK = one-hot label encoding
yWe RX = prediction after Softmax(+)

XM o2 | 03| 04 o1 o JEEIEEE

Total loss over all N training examples

N
Loss = z CE(y(i),?(i))
i=1
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Regression Loss

For regression tasks we often use Mean Squared

Error (MSE) a.k.a. L2 loss PRIk A
for data point (i):

() i-th data point

. . K -
MSE(y(l)’j,\(l))=z (y(— 32
J

i—1 j-th target

M i 23 200506

8{(") e R¥ = Real valued vector of targets
e R* = Real valued vector of predictions

HM 09 | 28 2003 08

Total loss over all N training examples

N
Loss = z MSE(y®,5W)

1=1

where:
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GNN Training Pipeline (4)

(4) How do we measure the success of a GNN?

- Accuracy
- ROC AUC A4S ALBEEATSS
B R AER . | Evaluation
: metrics
Input Graph Node
Graph Neural embeddings
Network
W [| Prediction | I
— L > > *| Predictions Labels
A N [| [| head
/ J
PPPPPPPPPP et Loss
function
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Evaluation Metrics: Regression

We use standard evaluation metrics for GNN
(Content below can be found in any ML course)

In practice we will use sklearn for implementation

Suppose we make predictions for N data points
Evaluate regression tasks on graphs:

N ARARE

T 0030
\ =1 N

FH e RE

Zﬁv—1|y(i) — /)7(0|
— R I S LRAER KRR,
N AR
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Evaluation Metrics: Classification

Evaluate classification tasks on graphs:
(1) Multi-class classification AL ALE AT
@5 R AFE
1[argmax(?(i)) = y(i)]
N
(2) Binary classification

Metrics sensitive to classification threshold

If the range of prediction is [0,1], we will use 0.5 as threshold

Metric Agnostic to classification threshold
ROC AUC
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Metrics for Binary Classification

Accuracy:
TP + TN

TP+ TN + FP + FN  |Dataset|
Precision (P):

TP + TN 048 ArBgLidss
= El5 R A4

Confusion matrix
TP + FP
Reca" (R): Actually Actually
TP Positive (1) | Negative (0)
Predicted Tr.u.e Félée
Positive (1) Positives Positives
TP + FN (TPs) (FPs)
o . False True
F 1 -Sco re. NZrea(:!c’;e(do) Negatives Negatives
2P x R gatlv (FNs) (TNs)
P+ R
Sklearn Classification Report
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(4) Evaluation Metrics

ROC Curve: Captures the tradeoff in TPR and
FPR as the classification threshold is varied
for a binary classifier. MR ALR AT

. G5 R A%EIL
' et
~ TP
TPR = Recall =
TP + FN
— Eifi:ﬁ..ﬁl;fi;'&?.iﬁ EPR FP
roteaSMM-i —_
FP + TN
Note: the dashed line
/ | | | | L | |
0 02 0S8 ! represents performance of
Wikipedia FPR a random classifier
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(4) Evaluation Metrics

/‘
08 =
2 A
= 06 f‘( /b}/{)\% Al-}g HK']‘iiiB
s | 7 = o.g X
é 1 — NetChop C-term 3.0 EI 2\ P fak, ﬁ 45 F%
";_,‘ 0.4 — TAP + ProteaSMM-i
= ProteaSMM-i
_r;
. / o Wikipedia
0 0.4 O () 0.8 1

False positive

ROC AUC: Area under the ROC Curve.

T
randomly c

ne probability that a classifier will rank a
nosen positive instance higher than a

randomly c

2/16/2023

nosen negative one
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Stanford CS224W:
Setting-up GNN Prediction Tasks




GNN Training Pipeline (5)

Evaluation
metrics
Input Graph Node
Graph Neural embeddings /\
Network .
— : > D > Prediction » Predictions Labels
,, . |] |] head
J ::' % / \/
PPPPPPPPPP e s D D D L
0SS
function

(5) How do we split our dataset
into train /validation / test set?

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
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Dataset Split: Fixed / Random Split

Training set: used for optimizing GNN parameters

Validation set: develop model/hyperparameters

Test set: held out until we report final performance
A concern: sometimes we cannot gudrad ntee
that the test set will really be held out Dota Lukse
Random split: we will randomly split our
dataset into training / validation / test

We report average performance over different
random seeds FAAR X BEAE
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Why Splitting Graphs i1s Special

Suppose we want to split an image dataset
Image classification: Each data point is an image

i 1 -3 B v 5] 14.d R 1R
Here data points are independent ﬁjof%ﬁ;—y Ao iid ARR

Image 5 will not affect our prediction on image 1

.........
L]
3

-------
.... .
“I‘ .
[ ] ] “' :
* .
- *
. **
* R
* .
D .s®
* as*®
‘a
"Eaman
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Why Splitting Graphs i1s Special

Splitting a graph dataset is different!
Node classification: Each data point is a node

Here data points are NOT independent £:# 2 1id 181

Node 5 will affect our prediction on node 1, because it will
participate in message passing = affect node 1's embedding
g E P LA RE Y
T hE &2 0|\ R T

........
annnnt® tre,
.s®
-
.*
[ %4

Training

What are our options?
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Why Splitting Graphs i1s Special

B AEA T
Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).
We will only split the (node) labels

At training time, we compute embeddings using the
entire graph, and train using node 1&2’s labels

, we compute embeddings
, and

Training
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Why Splitting Graphs i1s Special

J34h K 55

Solution 2 (Inductive setting): We break the edges

between splits to get multiple graphs
res
Now we have 3 graphs that are mdepeﬁnilent Node 5 will

not affect our predictionon node 1 any more

At training time, we compute embeddings using the
graph over node 1&2, and train using node 1&2’s labels

, we compute embeddings
,and

.........

.........
.s
s
.
.
.
.

Training o 0/9 214 zmén%lﬂiuﬁ

2448

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 60



Transductive / Inductive Settings

Transductive setting: training / validation / test
sets are on the same graph
The dataset consists of one graph

The entire graph can be observed in all dataset splits,
we only split the labels

Only applicable to node / edge prediction tasks
Inductive setting: training / validation / test sets
are on different graphs

The dataset consists of multiple graphs

Each split can only observe the graph(s) within the split.
A successful model should generalize to unseen graphs

Applicable to node / edge / graph tasks 4 F| A1)
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Example: Node Classification

Transductive node classification
All the splits can observe the entire graph structure, but

Training

Inductive node classification

Suppose we have a dataset of 3 graphs
Eq_c_:_h__;plit contains an independent graph

L4 .“
0‘ Ll [ ]
Training
5
-
. A A
H
.
A
‘.‘.‘
"‘
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Example: Graph Classification

Only the inductive setting is well defined for
graph classification & %%
Because we have to test on unseen graphs

Suppose we have a dataset of 5 graphs. Each split
will contain independent graph(s).

.
INPUT GRAPH INPUT GRAPH INPUTGRAPH = = INPUTGRAPH = :  INPUTGRAPH

Training
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Example: Link Prediction

Goal of link prediction: predict missing edges
Setting up link prediction is tricky:

Link prediction is an unsupervised / self-supervised
task. We need to create the labels and

on our own .
Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

Original graph Input graph to GNN Predictions made by GNN
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Setting up Link Prediction

Message edges

Original graph

For link prediction, we will split edges twice
Step 1: Assign 2 types of edges in the original graph

Message edges: Used for GNN message passing

After step 1:
Only message edges will remain in the graph
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Setting up Link Prediction

Step 2: Split edges into train / validation / test
Option 1: Inductive link prediction split

Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

2/16/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 66



Setting up Link Prediction

Step 2: Split edges into train / validation / test
Option 1: Inductive link prediction split

Suppose we have a dataset of 3 graphs. Each
inductive split will contain an independent graph

In train or or set, each graph will have 2
types of edges: message edges +

are not the input to GNN
ARF BAF A%

wosage Q\@ v ® V
/e S\ e G
o ®
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Setting up Link Prediction

Option 2: Transductive link prediction split:

This is the default setting when people talk about
link prediction

Suppose we have a dataset of 1 graph
% A sc M ERRE
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Setting up Link Prediction

Option 2: Transductive link prediction split:

By definition of “transductive”, the entire graph can
be observed in all dataset splits

But since edges are both part of graph structure and the
supervision, we need to hold out / edges

To train the training set, we further need to hold out
for the training set

Next: we will show the exact settings
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Setting up Link Prediction

Option 2: Transductive link prediction split:

B- AR MR
The original graph

© 3] ©

(1) At training time: (2) At validation time: (3) At test time:
Use training message Use training message Use training message
edges to predict edges & edges &
to
predict to
predict
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Setting up Link Prediction

Summary: Transductive link prediction split:

X1 @ A7 Edge
9 Training message edges

Split

The original graph Split Graph with
4 types of edges

Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently.

Luckily, we have full supportin PyG and GraphGym
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GNN Training Pipeline

Evaluation
metrics

Input Graph Node

Graph Neural embeddings /\

Network
D Prediction | _—
— | > > » Predictions Labels

i |] |] head

PPPPPPPPPP eoo Loss
function

Implementation resources:
DeepSNAP provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design
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Summary of the Lecture

We introduce a general GNN framework:
GNN Layer:

Transformation + Aggregation

Classic GNN layers: GCN, GraphSAGE, GAT
Layer connectivity:

The over-smoothing problem

Solution: skip connections
Graph Augmentation:

Feature augmentation

Structure augmentation

Learning Objectives
The full training pipeline of a GNN
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