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 Goal: create long-lasting resources for your 
technical profiles + broader graph ML 
community

 Three types of projects
▪ 1) Real-world applications of GNNs
▪ 2) Tutorial on PyG functionality
▪ 3) Implementation of cutting-edge research

 We will publish your blog posts on our 
course’s Medium page!
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 Goal: identify a specific use case and 
demonstrate how GNNs and PyG can be used 
to solve this problem

 Output: blog post, Google colab
 Example use cases
▪ Fraud detection
▪ Predicting drug interactions
▪ Friend recommendation

 Check out the featured posts from our course 
last year as examples of this type of project
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 Goal: develop a tutorial that explains how to 
use existing PyG functionality

 Output: blog post, Google colab
 Example topics for tutorials
▪ PyG’s explainability module
▪ Methods for graph sampling (e.g., negative 

sampling, sampling on heterogeneous graphs)
▪ Tutorial on GraphGym, a platform for designing 

and evaluating GNNs
 Check out example tutorials from PyG
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 Goal: implement interesting methods from a 
recent research paper in graph ML 

 Output: PR to PyG contrib, short blog post 
 Project details
▪ Implementation should include comprehensive 

testing and documentation on new functionality
▪ Try to build on existing PyG and PyTorch code 

wherever possible
▪ Note: this project is more manageable if you are 

already comfortable with PyTorch and deep 
learning. We also highly recommend group of 3.
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 Project is worth 20% of your course grade
▪ Project proposal (2 pages), due February 7
▪ Final reports, due March 21

 We recommend groups of 3, but groups of 2 
are also allowed

 Full project description will be released 
tonight! We will provide much more detail on 
each project type, examples, pointers to 
datasets, tips for writing blog posts and 
Google Colabs, etc.
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



(2) Aggregation

(1) Message

 Putting things together:
▪ (1) Message: each node computes a message

▪ (2) Aggregation: aggregate messages from neighbors

▪ Nonlinearity (activation): Adds expressiveness
▪ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
▪ Can be added to message or aggregation
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𝐦𝑢
(𝑙) = MSG 𝑙 𝐡𝑢

𝑙−1 , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙) = AGG 𝑙 𝐦𝑢

𝑙 , 𝑢 ∈ 𝑁 𝑣 ,𝐦𝑣
𝑙



 What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
▪ Observation from over-smoothing: Node embeddings in 

earlier GNN layers can sometimes better differentiate nodes
▪ Solution: We can increase the impact of earlier layers on the 

final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015



 Graph Feature manipulation
▪ The input graph lacks features → feature 

augmentation
 Graph Structure manipulation
▪ The graph is too sparse → Add virtual nodes / edges
▪ The graph is too dense → Sample neighbors when 

doing message passing
▪ The graph is too large → Sample subgraphs to 

compute embeddings 
▪ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
 (2) Certain structures are hard to learn by GNN
 Solution: 
▪ We can use cycle count as augmented node features
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021
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(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?
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So far what we have covered

Output of a GNN: set of node embeddings
{𝐡𝑣

𝐿 ,∀𝑣 ∈ 𝐺}
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(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



 Idea: Different task levels require different 
prediction heads
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Node-level
prediction

Edge-level 
prediction

Graph-level 
prediction



 Node-level prediction: We can directly make 
prediction using node embeddings!

 After GNN computation, we have 𝑑-dim node 
embeddings: {𝐡𝑣

𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺}
 Suppose we want to make 𝑘-way prediction
▪ Classification: classify among 𝑘 categories
▪ Regression: regress on 𝑘 targets

▪ 𝐖(𝐻) ∈ ℝ𝑘∗𝑑 : We map node embeddings from 
𝐡𝑣
(𝐿) ∈ ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘 so that we can compute the 

loss
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 Edge-level prediction: Make prediction using 
pairs of node embeddings

 Suppose we want to make 𝑘-way prediction

 What are the options for ?
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?
𝐡𝑢

𝐿

𝐡𝑣
𝐿



 Options for :
 (1) Concatenation + Linear
▪ We have seen this in graph attention

▪ ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 ))
▪ Here Linear(⋅) will map 2𝑑-dimensional 

embeddings (since we concatenated embeddings) 
to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡𝑢
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(𝑙−1)
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 Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 ):
 (2) Dot product
▪ ෝ𝒚𝒖𝒗 = (𝐡𝑢

𝐿 )𝑇𝐡𝑣
𝐿

▪ This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

▪ Applying to 𝒌-way prediction: 
▪ Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏) = (𝐡𝑢

𝐿 )𝑇𝐖(1)𝐡𝑣
𝐿

…
ෝ𝒚𝒖𝒗
(𝒌) = (𝐡𝑢

𝐿 )𝑇𝐖(𝑘)𝐡𝑣
𝐿

ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏),… , ෝ𝒚𝒖𝒗

(𝒌)) ∈ ℝ𝑘
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 Graph-level prediction: Make prediction using 
all the node embeddings in our graph

 Suppose we want to make 𝑘-way prediction
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Graph-level prediction

(2) Aggregation

(1) Message
 Headgraph(⋅) is similar to 
AGG(⋅) in a GNN layer!
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 Options for 
 (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})

 (2) Global max pooling
ෝ𝒚𝐺 = Max({𝐡𝑣

𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})
 (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿 ∈ ℝ𝑑,∀𝑣 ∈ 𝐺})

 These options work great for small graphs
 Can we do better for large graphs?
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K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019
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 Issue: Global pooling over a (large) graph will lose 
information

 Toy example: we use 1-dim node embeddings
▪ Node embeddings for 𝐺1: {−1,−2, 0, 1, 2}
▪ Node embeddings for 𝐺2: {−10,−20, 0, 10, 20}
▪ Clearly 𝐺1 and 𝐺2 have very different node embeddings 
→ Their structures should be different

 If we do global sum pooling: 
▪ Prediction for 𝐺1: ො𝑦𝐺 = Sum −1,−2, 0, 1, 2 = 0
▪ Prediction for 𝐺2: ො𝑦𝐺 = Sum −10,−20, 0, 10, 20 = 0
▪ We cannot differentiate 𝐺1 and 𝐺2!
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 A solution: Let’s aggregate all the node 
embeddings hierarchically
▪ Toy example: We will aggregate via ReLU Sum ⋅
▪ We first separately aggregate the first 2 nodes and last 3 nodes
▪ Then we aggregate again to make the final prediction

▪ 𝐺1 node embeddings: {−1,−2,0, 1, 2}
▪ Round 1: ො𝑦𝑎 = ReLU Sum −1,−2 = 0, ො𝑦𝑏 =
ReLU Sum 0,1, 2 = 3

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎, 𝑦𝑏 = 𝟑
▪ 𝐺2 node embeddings: {−10,−20, 0, 10, 20}
▪ Round 1: ො𝑦𝑎 = ReLU Sum −10, −20 = 0, ො𝑦𝑏 =
ReLU Sum 0,10, 20 = 30

▪ Round 2: ො𝑦𝐺 = ReLU Sum 𝑦𝑎, 𝑦𝑏 = 𝟑𝟎
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 DiffPool idea:
▪ Hierarchically pool node embeddings

▪ Leverage 2 independent GNNs at each level
▪ GNN A: Compute node embeddings
▪ GNN B: Compute the cluster that a node belongs to

▪ GNNs A and B at each level can be executed in parallel
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Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling , NeurIPS 2018
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 DiffPool idea:

▪ For each Pooling layer
▪ Use clustering assignments from GNN B to aggregate node 

embeddings generated by GNN A
▪ Create a single new node for each cluster, maintaining 

edges between clusters to generated a new pooled network
▪ Jointly train GNN A and GNN B
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(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



 Supervised learning on graphs
▪ Labels come from external sources
▪ E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs
▪ Signals come from graphs themselves 
▪ E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry
▪ We still have “supervision” in unsupervised learning
▪ E.g., train a GNN to predict node clustering coefficient

▪ An alternative name for “unsupervised” is “self-
supervised”
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 Supervised labels come from the specific use 
cases. For example:
▪ Node labels 𝒚𝒗: in a citation network, which subject 

area does a node belong to
▪ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an 

edge is fraudulent
▪ Graph labels 𝒚𝐺: among molecular graphs, the drug 

likeness of graphs
 Advice: Reduce your task to node / edge / graph 

labels, since they are easy to work with
▪ E.g., we knew some nodes form a cluster. We can treat 

the cluster that a node belongs to as a node label
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 The problem: sometimes we only have a graph, 
without any external labels

 The solution: “self-supervised learning”, we can 
find supervision signals within the graph.
▪ For example, we can let GNN predict the following:
▪ Node-level 𝒚𝑣. Node statistics: such as clustering 

coefficient, PageRank, …
▪ Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge 

between two nodes, predict if there should be a link
▪ Graph-level 𝒚𝐺 . Graph statistics: for example, predict 

if two graphs are isomorphic
▪ These tasks do not require any external labels!
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(3) How do we compute the final loss?
- Classification loss
- Regression loss



 The setting: We have 𝑁 data points
▪ Each data point can be a node/edge/graph

▪ Node-level: prediction ෝ𝒚𝑣
(𝑖), label 𝒚𝑣

(𝑖)

▪ Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖) , label 𝒚𝑢𝑣

(𝑖)

▪ Graph-level: prediction ෝ𝒚𝐺
(𝑖), label 𝒚𝐺

(𝑖)

▪ We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖 to refer 
predictions at all levels
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 Classification: labels 𝒚 𝑖 with discrete value
▪ E.g., Node classification: which category does a 

node belong to
 Regression: labels 𝒚 𝑖 with continuous value
▪ E.g., predict the drug likeness of a molecular graph

 GNNs can be applied to both settings
 Differences: loss function & evaluation 

metrics
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 As discussed in lecture 6, cross entropy (CE) is 
a very common loss function in classification

 𝐾-way prediction for 𝑖-th data point:

where:
𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples
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Label Prediction
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 For regression tasks we often use Mean Squared 
Error (MSE) a.k.a. L2 loss

 𝐾-way regression for data point (i):

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC 7A7A- 5!%%!$ $"# 5! 6Y
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 We use standard evaluation metrics for GNN
▪ (Content below can be found in any ML course)
▪ In practice we will use sklearn for implementation
▪ Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:
▪ Root mean square error (RMSE)

▪ Mean absolute error (MAE)
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 Evaluate classification tasks on graphs:
 (1) Multi-class classification
▪ We simply report the accuracy

 (2) Binary classification
▪ Metrics sensitive to classification threshold
▪ Accuracy
▪ Precision / Recall
▪ If the range of prediction is [0,1], we will use 0.5 as threshold

▪ Metric Agnostic to classification threshold
▪ ROC AUC
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 Accuracy:

 Precision (P):

 Recall (R):

 F1-Score:
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Sklearn Classification Report

Confusion matrix
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 ROC Curve: Captures the tradeoff in TPR and 
FPR as the classification threshold is varied 
for a binary classifier. 
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Note: the dashed line 
represents performance of 
a random classifierImage Credit: Wikipedia FPR

TPR
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 ROC AUC: Area under the ROC Curve. 
 Intuition: The probability that a classifier will rank a 

randomly chosen positive instance higher than a 
randomly chosen negative one
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(5) How do we split our dataset 
into train / validation / test set?

Dataset split



 Fixed split: We will split our dataset once
▪ Training set: used for optimizing GNN parameters
▪ Validation set: develop model/hyperparameters
▪ Test set: held out until we report final performance

 A concern: sometimes we cannot guarantee 
that the test set will really be held out

 Random split: we will randomly split our 
dataset into training / validation / test
▪ We report average performance over different 

random seeds
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 Suppose we want to split an image dataset
▪ Image classification: Each data point is an image
▪ Here data points are independent
▪ Image 5 will not affect our prediction on image 1
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 Splitting a graph dataset is different!
▪ Node classification: Each data point is a node
▪ Here data points are NOT independent
▪ Node 5 will affect our prediction on node 1, because it will 

participate in message passing → affect node 1’s embedding

 What are our options?
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 Solution 1 (Transductive setting): The input 
graph can be observed in all the dataset splits 
(training, validation and test set). 

 We will only split the (node) labels
▪ At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels
▪ At validation time, we compute embeddings using 

the entire graph, and evaluate on node 3&4’s labels
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 Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs
▪ Now we have 3 graphs that are independent. Node 5 will 

not affect our prediction on node 1 any more
▪ At training time, we compute embeddings using the 

graph over node 1&2, and train using node 1&2’s labels
▪ At validation time, we compute embeddings using the 

graph over node 3&4, and evaluate on node 3&4’s labels
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 Transductive setting: training / validation / test 
sets are on the same graph
▪ The dataset consists of one graph
▪ The entire graph can be observed in all dataset splits, 

we only split the labels
▪ Only applicable to node / edge prediction tasks

 Inductive setting: training / validation / test sets 
are on different graphs
▪ The dataset consists of multiple graphs
▪ Each split can only observe the graph(s) within the split. 

A successful model should generalize to unseen graphs
▪ Applicable to node / edge / graph tasks
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 Transductive node classification
▪ All the splits can observe the entire graph structure, but 

can only observe the labels of their respective nodes
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 Only the inductive setting is well defined for 
graph classification
▪ Because we have to test on unseen graphs
▪ Suppose we have a dataset of 5 graphs. Each split 

will contain independent graph(s).
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 Goal of link prediction: predict missing edges
 Setting up link prediction is tricky:
▪ Link prediction is an unsupervised / self-supervised 

task. We need to create the labels and dataset 
splits on our own

▪ Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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 For link prediction, we will split edges twice
 Step 1: Assign 2 types of edges in the original graph
▪ Message edges: Used for GNN message passing
▪ Supervision edges: Use for computing objectives
▪ After step 1:
▪ Only message edges will remain in the graph
▪ Supervision edges are used as supervision for edge 

predictions made by the model, will not be fed into GNN!
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 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
▪ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
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 Step 2: Split edges into train / validation / test
 Option 1: Inductive link prediction split
▪ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
▪ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
▪ Supervision edges are not the input to GNN
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 Option 2: Transductive link prediction split:
▪ This is the default setting when people talk about 

link prediction
▪ Suppose we have a dataset of 1 graph
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 Option 2: Transductive link prediction split:
▪ By definition of “transductive”, the entire graph can 

be observed in all dataset splits
▪ But since edges are both part of graph structure and the 

supervision, we need to hold out validation / test edges
▪ To train the training set, we further need to hold out 

supervision edges for the training set

▪ Next: we will show the exact settings
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 Option 2: Transductive link prediction split:
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 Summary: Transductive link prediction split:

▪ Note: Link prediction settings are tricky and complex. You 
may find papers do link prediction differently. 

▪ Luckily, we have full support in PyG and GraphGym
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Implementation resources:
DeepSNAP provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design



 We introduce a general GNN framework:
▪ GNN Layer: 
▪ Transformation + Aggregation
▪ Classic GNN layers: GCN, GraphSAGE, GAT

▪ Layer connectivity: 
▪ The over-smoothing problem
▪ Solution: skip connections

▪ Graph Augmentation:
▪ Feature augmentation
▪ Structure augmentation

▪ Learning Objectives
▪ The full training pipeline of a GNN
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